
Journal for the 
History of 
Astronomy

Edited byM. AHoskin

ł





JHA, xviii (1987)

OBSERVING WITH THE ARMILLARY ASTROLABE

JAROSŁAW WŁODARCZYK, Polish Academy of Science

In this paper I investigate the merits and limitations of the armillary astrolabe,1 
which served for direct observations of the ecliptic longitudes and latitudes of 
the heavenly bodies from Antiquity to the end of the sixteenth century. 
Observations made with a modern replica of the instrument are compared with 
historical astrolabic observations as reported by Ptolemy in the Almagest and 
with measurements made in 1503-4 by Bernard Walther in Nuremberg.2 I 
discuss also the role of refraction in determining the longitudes of reference 
stars. Appendix В by Jerzy Dobrzycki contains a general discussion of 
instrumental errors of the armillary astrolabe.

The Instrument

In its classical form the armillary astrolabe is known from the description given 
by Ptolemy in the Almagest.3 Further important details can be found in the 
Commentaries of Pappus and Theon on the Almagest, and in Proclus’s 
Hypotyposis. An excellent summary of these sources for our knowledge of the 
construction and use of the instrument was given by A. Rome.4

For my observations a wooden armillary astrolabe was used, one that follows 
closely the reconstruction given by Rome. This instrument was built in the 
Institute of Geodetic Astronomy of the Warsaw Technical University in the 
1950s. The instrument (see Figures 1 and 2) consists essentially of six concentric 
rings. Four of them (1, 2, 3 and 5) form the ecliptic system. Ring 1 with sighting 
pinnules yy slips within ring 2 representing the (internal) latitude ring. Ring 3 is 
the ecliptic ring. Ring 5 is the (external) latitude ring and rotates around the axis 
zz of the ecliptic just as does ring 2. Rings 3 and 4 are joined at the solsticial 
points. Ring 4, the solsticial colure ring, goes through the poles of the ecliptic 
and the equator. Pivots xx, which mark the celestial poles, are attached to ring 6 
representing the meridian ring. The system of rings is connected with the pillar 
by a U-shaped casing (instead of the outer meridian ring 7, in Rome’s 
reconstruction). Thus the whole system is detachable and can be located in the 
casing in any position.

The meridian ring of the instrument has an outer diameter of 80 cm. Ring 1 
has an inner diameter of 58 cm, this being also the distance between the sights. 
The cross-section of the rings is a square with sides approximately 1/30 of the 
ring’s diameter (i.e. about 2.5 cm).5 The instrumental obliquity of the ecliptic 
cannot be determined exactly without dismounting the instrument: 23°.25 < є, 
< 23°.5.6 The lateral faces of the ecliptic ring and the inner latitude ring are 
graduated into 360 degrees, without subdivisions. The scale of geographical 
latitude (on the meridian ring) also comprises Io marks. A nadir mark on the
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Fig. 1. Photograph of the armillary astrolabe on the observing terrace of the Institute of Geodetic 
Astronomy of the Warsaw Technical University.
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Fig. 2. The system of rings of the armillary astrolabe (adapted from the paper by Rome): ring 1 
with sighting pinnules yy slips within ring 2, the inner latitude ring; ring 3 is the ecliptic 
ring, ring 4 the solsticial colure ring, ring 5 the external latitude ring, and ring 6 the 
meridian ring; xx are the celestial poles, and zz the ecliptic poles.

casing enables one to adjust the instrument to the appropriate geographical 
latitude. The sights consist of metal plates fixed to ring 1 with round openings of 
3mm placed at a distance of 3.5 cm from the ring’s plane.

The instrument was investigated for possible faults of construction. In fact an 
excentricity of the ecliptic rings was noticed, producing sinusoidal errors in 
measured longitudes, and latitudes. The errors were duly corrected in the 
reduction.7

The Installation of the Instrument

There are three important aspects to placing the armillary astrolabe in position 
for observation: setting it for the correct geographical latitude, aligning it to the 
plane of the meridian, and adjusting the instrumental zenith to true zenith.

First of all the meridian ring 6 is set in the casing so that the nadir point 
coincides with the mark on the scale corresponding to the geographical latitude, 
in this case that of Warsaw (<p = 52°.2).

The instrument is then erected so that the plane of the meridian ring is parallel 
to the local meridian plane and perpendicular to the plane of the horizon.8 To 
adjust the instrument a plumb-line was used so as to lie along the lateral faces of 
the meridian ring in four symmetrical points. The vertical axis of the instrument 
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was checked additionally by the plumb-line dropped from the zenith point of 
the meridian ring towards the nadir mark.

Because of unfavourable conditions during observations in autumn 1985 the 
instrument was not aligned in the meridian by the classical method of equal 
shadows (the Indian Circle). Instead, the system of rings was set up on the pillar 
with the poles of the instrumental ecliptic situated in the zenith-nadir line, the 
ecliptic being placed so as to make ring 4 coincide with the plane of the meridian 
ring. Ring 2 could then be used as the altitude circle, with the azimuth of the Sun 
read directly off the ecliptic circle.

In actual observation, on 23 October, two hours before sunset, ring 2 was set 
to the azimuth of the Sun, as computed from modern theory. At a given 
moment the instrument was turned so as to align the plane of ring 2 to the Sun. 
On repeating this procedure four times, the observed azimuth of the Sun was 
found to fit with the computed one, and it was assumed that the meridian ring of 
the astrolabe was in the local meridian plane. The position of the legs of the 
pillar was then marked with respect to a line drawn earlier on the terrace.

The instrument had to be repositioned for each session of observations, and 
before each session the instrument was aligned with the meridian, using the 
fixing marks.

Observations

To align the ecliptic ring to the actual position of the ecliptic a reference object 
(Sun, Moon, planet or star) is necessary. For a given reference object ring 5 is set 
against the ecliptic ring 3 so as to indicate the longitude of the reference object. 
One then turns the system of rings 3 to 5 to locate the observed body in the plane 
of ring 5, and the astrolabe’s ecliptic is now correctly aligned.9 (Aligning the 
instrumental ecliptic can also be done without using ring 5, when the Sun is used 
as the reference object (for details see Method A, below).) With the instrumental 
ecliptic correctly located, ring 2 (with sights) is now rotated until the observed 
object can be seen in the ring’s plane (through the sights). The position of ring 2 
with respect to the ecliptic ring (and ring 1 with respect to the ring 2) indicates 
measured longitude (and latitude).

By means of a set of several bright stars of known longitudes one can 
determine the coordinates of any object in the night sky. This was the method 
used to compile the catalogue of stars in the Almagest.10 Some of the obser­
vations of planets by Ptolemy also follow this scheme, with a Tau, a Leo, a Vir, 
a Sco, and a and/or В Cap, serving as reference stars for observations with the 
armillary astrolabe." All of them are bright stars of moderate ecliptic latitudes.

The main problem is the determination of the longitudes of reference stars. 
The star’s distance from the 0° of Aries can be determined only by reference to 
the position of the Sun. As simultaneous observation of the Sun and the stars is 
impossible, the classical method uses the Moon as a connecting link between the 
sky by day and the sky by night.12 The first use of observations of Venus for this 
purpose has been attributed to Bernard Walther.13 Observing the Moon must be 
as ancient a procedure as the astrolabe itself (both the instrument and the 
procedure are said to have been introduced by Hipparchus).14
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Following the Almagest, one can summarize as follows the procedure for 
determining the coordinates of stars:15 
(1) before sunset

(a) aligning the instrumental ecliptic to the Sun,
(b) measuring the ecliptic longitude of the Moon;

(2) after sunset
(c) aligning the instrumental ecliptic to the Moon’s longitude with appro­

priate corrections for the Moon’s motion between steps 1 and 2 and 
for its parallax,

(d) measuring the coordinates of a star.
Setting the instrumental ecliptic to the Sun (step ( 1 )(a)) can be achieved in two 

ways.
Method A (“absolute", purely observational). For any position of the Sun 

there is one and only one position of the ecliptic ring in which the inner surface 
of the ring is fully in shadow and for which the instrumental ecliptic coincides 
with the ecliptic plane. Moreover, when ring 5 is situated so as to “cast its 
shadow exactly on itself’, then the longitude of the Sun can be read directly 
from the instrumental ecliptic.16

Method В (relying on the solar theory). This method is described by Ptolemy: 
“... we set the outer astrolabe ring [ring 5] to the graduation [on the ecliptic ring 
3] marking, as nearly as possible, the position of the Sun at that moment. Then 
we rotated the ring through the poles [ring 4] until the intersection [of outer 
astrolabe ring and ecliptic ring] marking the Sun’s position was exactly facing 
the Sun, and thus both the ecliptic ring [ring 3] and [the ring] which goes through 
the poles of the ecliptic [ring 5] cast its shadow exactly on itself.”17

Yet another method was used by Walther. He observed the meridian zenith 
distance of the Sun with the parallactic ruler, thus determining the Sun’s 
declination and longitude. For the afternoon’s observation with the armillary 
sphere he then used this longitude, duly corrected for the time elapsed since 
noon.18

Let us explain some details of the observing procedure adopted in the course 
of the present study.

The alignment of the latitude ring (ring 2 or 5) to the observed object was 
always done by sighting along the left lateral face of the ring. Sighting the Moon 
was done by setting ring 2 or 5 tangentially to the west limb of the Moon. Only 
longitudes were determined as it was found too difficult to align ring 2 using 
pinholes, because of the small diameter of openings. The exceptions were 
latitudes of two bright stars, Deneb (a Cyg) and Pollux (ß Gem). In the 
measuring, the observed body was put in the middle of the ellipse formed by the 
projection of an ecliptic ring onto the plane perpendicular to the line of sight. 
This ensured that the sighting was done along the diameter of ring 2 (or 5).

When determining ecliptic coordinates, the time and the medium coeli (the 
longitude of the culminating point of the ecliptic) were noted.

The longitude was measured initially to a quarter of a degree. It appeared 
however that estimating 1/10° was feasible, and most of the results were noted 
to 0°.l.

After each measurement the rings of the instrument were moved and the 
whole procedure of measurement repeated anew.
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Table 1. Observations of the azimuth of the Sun with the armillary astrolabe working in 
horizontal coordinates.

Date n O-C ^O-C

4 Nov. 1985 12 - 0°.03 0°.08
4 Nov. 1985 16 - 0 .03 0 .07
1 Dec. 1985 12 - 0 .90 0 .10

Table 2. Observations of the longitude of the Sun according to Pappus’s method.

Date n O-C So.c
4 Nov. 1985 6 o°.o 0°.2
4 Nov. 1985 4 - 0 .5 0 .1
1 Dec. 1985 6 + 1 .6 0 .2
4 Dec. 1985 12 - 0 .2 0 .2

Results of Observations

Table 1 presents the results of observations of the Sun’s azimuth in horizontal 
coordinates, from three independent installations of the instrument. Here n is 
the number of observations during an observing session, O-C is the mean value 
of the error of n observations (the observed position minus the position 
computed from modern theory), and So c is the standard deviation of the error.

Table 2 presents the results of observations of the Sun’s longitude from four 
independent installations of the instrument.

On 23 October 1985, the longitudes of two reference stars, a Ari and a Tau, 
were determined by linking them with the Sun’s position using the Moon as 
intermediary. The first step (Method A) in the procedure for establishing the 
longitudes of reference stars is summarized in Table 3, where the columns are as 
follows:
Xobs measured longitudes (for the Moon Xobs refers to the west

limb of the Moon’s disk)
Xcalc longitudes calculated from modern theory
(O —0S, (O —0M Xobs — Xcalc (for the Moon the parallax was taken into 

account)
A systematic errors in measurements due to atmospheric

refraction (see Appendix A)
A, errors in aligning the ecliptic ring caused by refraction (see

Appendix A)
dXs, dXM errors in observations after eliminating the influence of

refraction: dXs = (O —0S — A ; dXM = (O — 0M — A, 
dXre| dXM — dXs, i.e. the error in the Moon’s position after the

error in the Sun’s measured longitude has been eliminated.
A variant of Method В was also used. Close to sunset, the Sun’s shadow was 

no longer sharp enough and ring 5 could not have been set in its own shadow. 
To align the instrumental ecliptic 1 simply directed the intersection of rings 3 
and 5 to the centre of the Sun’s disk. This method gave rise to large accidental



Table 3. The first step in determining the longitudes of reference stars a Ari and a Tau: Method A.

Date. UT Sun Moon dX„,
(O-Os A dX, K* X». (O-OM A, dX„

23 Oct. 1985
14b58m 210 .1 208°.7 - Г.4 - 0°.5 — 0°.9 333°. 1 331°.5 - 1°.6 - 0°.5 - I°.l — 0°.2
15 00 210 .1 208 .5 - 1 .6 - 0 .6 - 1 .0 333 .1 331 .1 - 2 .0 - 0 .6 - 1 .4 -0 .4
15 02 210 .2 208 .7 - 1 .5 -0 .6 -0 .9 333 .1 331 .5 - 1 .6 - 0 .6 - 1 .0 -0.1
15 07 210 .2 208 .7 - 1 .5 - 0 .7 - 0 .8 333 .2 331 .5 - 1 .7 - 0 .6 - 1 .1 -0.3

Table 6. Stellar observations with a Ari and a Tau as reference stars.

Star Xak ßcV N 5. S dX„, R.Ś.
у UMi 218°.6 + 75°.2 1 219°.6 0°.4 — + 1°.O a Ari
ß UMi 226 .9 73 .0 5 227 .5 0 .3 0°.2 + 0 .6 a Ari
a Lyr 285 .1 61 .7 10 286 .3 0 .2 0 .3 + 1 .1 a Ari
a Cyg 335 .1 59 .9 7 336 .4 0 .2 0 .2 + 1 .3 a Ari
a Aur 81 .6 22 .9 6 81 .7 0 .2 0 .2 + 0 .1 a Ari
a Aur 81 .6 22 .9 9 81 .7 0 .1 0 .1 + 0 .1 a Tau
a Peg 353 .3 19 .4 7 353 .3 0 .1 0 .2 0 .0 a Ari
a Peg 353 .3 19 .4 7 353 .4 0 .2 0 .1 + 0 .1 a Tau
a Aqr 333 .2 10 .7 4 333 .0 0 .1 0 .1 -0 .2 a Ari
a Gem 110 .0 10 .1 7 109 .7 0 .1 0 .1 -0 .3 a Tau
ß Ari 33 .8 8 .5 9 33 .8 0 .1 0 .1 0 .0 a Tau
ß Gem 113 .0 6 .7 7 112 .7 0 .1 0 .1 -0 .3 a Tau
t] Psc 26 .6 5 .4 2 26 .3 0 .2 — -0 .3 a Ari
ß Tau 82 .4 5 .3 8 82 .3 0 .2 0 .1 -0 .1 a Ari
e Gem 99 .7 2 .1 4 99 .6 0 .2 0 .1 -0 .1 a Ari
a Leo 149 .6 + 0 .5 5 149 .4 0 .2 0 .3 -0 .2 a Tau
Y Gem 98 .9 -6 .7 5 98 .9 0 .2 0 .1 0 .0 a Ari
aCMi 115 .6 16 .0 6 115 .4 0 .1 0 .1 -0 .2 a Tau
ß Ori 76 .6 31 .1 5 76 .5 0 .1 0 .2 -0 .1 a Tau
a CMa 103 .9 -39 .6 6 103 .8 0 .2 0 .2 -0 .1 a Ari

O
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errors, shown in Table 4. Nevertheless the longitude of the Moon measured by 
this method was closer to the actual value than the longitudes obtained by 
Method A, and so it was taken over into the second step of the procedure. I took 
the longitude of the Moon as equal to 334°.2 on 23 October 1985 at 15h15m UT.

Table 5 contains results of the second step of the procedure. Xobs is the mean 
measured longitude from six individual sightings, and sx is the standard 
deviation of the measured longitude in the sample.

The longitudes of eighteen stars were measured with the astrolabe, with a Ari 
and a Tau serving as reference stars. For the longitudes of reference stars, 
observed values were used. The results of these observations are summarized in 
Table 6, where the columns are as follows:
Xcalc, ßral<. the actual ecliptic coordinates of stars
N the number of observational sessions
Xobs the mean from N observed longitudes, after eliminating the error in 

longitude of the reference star19
5X the mean from N standard deviations of the longitude measured in a

night’s session
S the standard deviation from the Xobs in the sample of N observed

longitudes
dX. the relative error in longitude, dX . = 1„. — X„.
R.S. the reference star.

Each star was measured eight times during an observing session.
Only two stars were observed using pinholes at ring 1: a Cyg and ß Gem. The 

results are presented in Table 7.
Finally, three planets were observed, Jupiter after sunset, Mars and Venus 

shortly before sunrise. One session comprised six to eight individual sightings. 
Tables 8 and 9 contain the results of the observations of planets.

Discussion

(1) Absolute observations

In an absolute observation the solar reference frame is established on the 
celestial sphere. For the armillary astrolabe it can be done by setting the Sun in 
the plane of the astrolabic ring(s) (rings 3 or 5). It appears from Tables 1 and 2 
that, for horizontal observations of the Sun, the mean value of the standard 
deviation of the error is 0°.08, and, for observations in ecliptic coordinates, 0°.2. 
These values demonstrate that the error in aligning a ring “to its shadow” 
remains below 15', even for mediocre conditions (low solar altitudes, not very 
clearly-defined shadow).20 Thus, one may conclude that the actual setting of the 
Sun in the plane of ring can be done with adequate accuracy. None the less, 
aligning the ecliptic ring, by Method A, to coincide with the true ecliptic in the 
sky, is highly susceptible to errors introduced by:
(a) refraction (if observations are taken at sunset according to classical 

descriptions);
(b) incorrect setting up; and
(c) errors in the construction of the instrument.
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Table 4. The first step in determining the longitudes of reference stars a Ari and a Tau: Method B.

Date, UT Sun Moon

Kb. o-c
23 Oct. 1985 
15h09m 210°.2 333°.2 335-.3 + 2°.l
15hllm 210 .2 333 .2 333 .3 + 0 .1l5h]4m 210 .2 333 .2 334 .0 + 0 .8

Table 5. The second step in determining the longitudes of reference stars a Ari and a Tau.

Star n 4* O-C »x
a Ari 6 37°.5 38 .3 + 0°.8 0°.l
a Tau 6 69 .6 70 .3 + 0 .7 0 .15

Table 7. Observations of a Cyg and ß Gem using pinholes.

Star n with pinholes without pinholes ßob$ łx dß =
Pot* — Peak

R.S.
^ob$ »X ^obs

a Cyg 8 336°.2 0°.5 336°.2 0°.2 + 60°.0 0°.2 + 0°.l a Ari
ß Gem 8 112 .6 0 .2 112 .8 0 .1 + 5 .7 0 .1 -1 .0 a Tau

Table 8. Observations of Jupiter with a Ari as the reference star.

Date Time 
UT

»X dlrt

1985:
30 Oct. 17x47™ 308°.3 308-.8 0°.2 -0 .4
4 Nov. 18 43 308 .8 309 .5 0 .1 -0 .2
8 Nov. 17 56 309 .2 310 .0 0 .1 -0 .1

16 Nov. 19 23 310 .2 311 .0 0 .2 -0 .1
30 Nov. 17 24 312 .3 313 .1 0 .1 -0 .1
18 Dec. 16 09 315 .5 316 .3 0 .1 -0 .1
22 Dec. 16 16 316 .3 317 .1 0 .1 -0 .1
23 Dec. 16 25 316 .5 317 .1 0 .1 -0 .3

Table 9. Observations of Mars and Venus.

Planet Date 
(1985)

Time 
UT

\ak Чь. »X dX„, R.S.

Mars 4 Nov. 3h45m 184°.7 184°.8 0°.3 — 0°.5 a Tau
5 Nov. 3 42 185 .3 185 .7 0 .2 -0 .5 a Ari
9 Nov. 3 41 187 .8 187 .9 0 .3 -0 .5 a Tau

Venus 4 Nov. 4 36 203 .2 203 .6 0 .4 -0 .2 a Tau
5 Nov. 4 30 204 .4 204 .5 0 .1 -0 .5 a Tau
9 Nov. 4 46 209 .4 209 .5 0 .3 -0 .5 a Tau
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An example of the importance of these factors is the observation from 23 
October 1985 (see Table 3). The measured longitude of the Sun was too small by 
Г.5, 0°.6 of which is explained by atmospheric refraction. The remainder (0°.9) 
was probably caused by an error in instrumental setting and/or in construction.

In all probability, errors that are instrumental in origin are responsible also 
for the errors in solar longitudes in Table 2. They vary from —0°.5 to + Io.6, 
while the standard deviation of a series remains below 0°.2.

The three above-mentioned points are discussed in detail in Appendices A 
and B. The general conclusion from analysing the first two factors is that 
Method A could be useful only close to the vernal equinox at sunset (and close 
to the autumn equinox at sunrise). But the error of the instrumental obliquity e, 
can make difficult any reliable alignment of the instrumental ecliptic.

Thus, exceptional care in preparing the instrument and suitable observational 
conditions are necessary for absolute observations and for establishing a set of 
reference stars. Otherwise the probability of a large error in aligning the ecliptic 
ring to the ecliptic via the Sun in Method A is very high. Thus, to establish the 
longitudes of stars with satisfactory accuracy, the Sun’s position on the ecliptic 
should be known beforehand, from other sources. The accuracy of results 
obtained in this way (Method B) depends on the error in the accepted initial 
longitude of the Sun and on the effect of refraction (cf. Appendices A and B).

Since the description of Method В comes from the Almagest, the question 
arises of whether this was the way in which the catalogue of stars in the 
Almagest was compiled. It is generally accepted that the systematic errors in the 
longitudes of zodiacal stars in this catalogue practically vanish for the epoch of 
Hipparchus. If we accept that the catalogue was based, in principle, on 
observations of Hipparchus,21 it would follow from the argument presented in 
our Appendices that Hipparchus was likely to have used Method B.

On the other hand some kind of ‘rehabilitation’ may be invoked for the 
observation of Regulus, of 23 February 139, the only observation from 
Antiquity using Method B.22 As shown in Appendix A, the error in aligning the 
instrumental ecliptic in this observation was about — l°.l. This error went over 
into the measured longitudes of the Moon and Regulus. Besides, the Moon was 
observed near first quarter, and in Ptolemy’s lunar theory the Moon’s longitude 
had a bias of about — l°.l. Thus, the observed longitude of the Moon should 
have been, as Ptolemy claimed, in close agreement with the lunar theory. It 
seems, therefore, that the description of his observations given by Ptolemy is 
intrinsically consistent and could correspond to the actual situation when one is 
observing by Method B. This is contrary to R. R. Newton’s statement that “the 
value [of the longitude of Regulus] that Ptolemy obtains cannot be explained by 
experimental sources, no matter what their size. The crucial point is the exact 
agreement with preassigned values, and exact agreement, occuring time after 
time, cannot be the consequence of errors in measurement.”23

(2) Differential observations

In speaking of ‘differential observations’ we mean observations using a refer­
ence star of known longitude. Usually the Moon (or Venus) provided the 
necessary link between the Sun and the star. In my observations the standard 
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deviation sx of six to eight sightings is almost the same both for the Moon and 
the star used as a reference body. Compare, for example, sx in Tables 5 and 6 or 
8.

The following discussion deals with differential observations at low and 
moderate ecliptica! latitudes (stars with |ß| < 40° and planets). In almost all 
cases of differential observations of stars and planets (except for Mars and 
Venus) the standard deviation sx does not exceed 0°.2. This has been obtained 
using the ecliptic ring graduation in steps of Г, fractions being estimated by eye. 
Such values of sx demonstrate that the precision of a measurement is quite good 
in spite of the high complexity of the instrument.

In order to analyse the influence of the repositioning of the instrument on 
longitude observations a variance of measured longitudes within a session has 
been compared with the one between sessions. For three stars, a Aur, ß Ari, and 
ß Tau, the standard deviations of the difference between the mean values of the 
measured longitude for pairs of sessions have been computed. These standard 
deviations vary from 0°.06 to 0°.10, whereas the magnitude of almost all 
session-to-session differences between the means varies from O°.O to 0°.2, which 
is less than two standard deviations. This shows that for astrolabio differential 
observations the repositioning has no significant influence on the repeatability 
of observations.24

The mean relative error of observations of stars and planets (Jupiter) is 
— 0°,12 + 0°.09. (However, markedly larger relative error for Mars and Venus 
should be noted; see Table 9.)

The same degree of precision and accuracy of differential observations with 
the armillary sphere was achieved by Bernard Walther in his observations of 
1503-4. For 198 observations of stars and planets by Walther the mean relative 
error in longitude is about — 5' and the standard deviation of the error amounts 
to 10'. As Kremer noticed, Walther’s data reveal the ultimate limitations of the 
zodiacal armillary sphere and observational procedures.25 For an armillary 
sphere, an instrument of so many degrees of freedom, one can hardly expect a 
standard deviation of results markedly less than 10'. This was realized already 
by Tycho Brahe, experimenting with the zodiacal armillary sphere 2ft in 
diameter.26 A negative relative error of — 0°.l corresponds to about 30 seconds, 
which necessarily elapsed between the alignment of the instrumental ecliptic to 
the reference star and the sighting of the measured object. During this period 
the rotation of the celestial sphere changes the instrumental longitude by just 
the amount of the relative error cited above.

This is seen only in the 1985 observations of a Cyg and ß Gem through 
sighting pinnules (Table 7). Longitudes measured in this way were smaller than 
longitudes observed on the same nights without using the sights, by — 0°.4 and 
— 0°.2 for a Cyg and ß Gem, respectively. The difference in time necessary to 
conduct an observation with or without using pinholes may well explain this 
discrepancy. The mean time lag between two observations without pinholes was 
lm.6 against 2m.7 for observations through pinholes. A difference of about lm is 
the result of the time-consuming process of locating a star through the small 
openings, and it corresponds to an error about 0°.2 in longitude.

Finally, let us say a little about observations of stars with high ecliptic 
latitudes. They are characterized by large errors in measured longitudes. In the 
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case of our observations of four stars with ß > 60°, relative errors lay between 
+ 0°.6 and +Г.З. The standard deviation of the eight measurements made 
during the session is slightly larger (from 0°.2 to 0°.4) than that of observations 
along the ecliptic. An increase in the errors in longitude is caused by the fact that 
for high latitudes the influence of errors of instrumental setting and of 
construction becomes significant.

From Personal Experience

It might be worth while making a few remarks based on this short experience of 
actual observing.

(1) Mobility of the rings. The astrolabe is a highly complex structure of rings 
which have to be set in a specified position. It is not known how the ancient 
observers prevented possible accidental changes in the relative position of 
individual rings. This might well have been the source of accidental and 
systematic errors.

(2) Size of the pinholes. My experience is that to have small openings (3mm in 
diameter, i.e. 0°.2 aperture of the upper sighting hole) may make a precise 
measurement impossible. It takes too much time to align an instrument to a 
bright star; faint stars can be found only by chance. Unfortunately, nothing 
definite is known about actual sights in ancient and mediaeval armillary 
spheres, but their openings were probably larger than those of the instrument in 
this study. It should be noted here that the parallactic ruler described by 
Ptolemy was equipped with sights such that the small aperture was at the eye, 
while the upper corresponded to the Moon’s angular diameter.27

These problems induced me to determine the longitudes of stars and planets 
using the internal latitude ring, in exactly the same way as that in which the 
external latitude ring was used. There are arguments in favour of this method: 
the procedure is free from additional errors which might stem from the 
construction of the sights; also, locating the observed star along the plane of the 
measuring ring can be done with adequate accuracy.

At this point it might be worth while to recall that Walther in his observations 
of stars in 1503-4 did not note the latitudes. But this does not necessarily prove 
that he did not use the pinhole sights.

(3) Observing at small latitudes. The latitudes of some stars in Ptolemy’s 
catalogue are less than 1°. Walther observed latitudes as small as 0°15', 0°8' and 
0°2'. And yet, in observing with pinholes, there is a dead zone on both sides of 
the ecliptic, determined by the width of the ecliptic ring. In the armillary 
astrolabe used for this study the smallest accessible latitude equals ± 2° (with 
the dimensions of Ptolemy’s astrolabe given by Pappus the limit is about ± Io). 
Small latitudes must therefore have been estimated in some way, of which I 
could not find any trace in available descriptions. There is only one piece of 
information in Pappus’s commentary dealing with a star on the ecliptic. The 
star’s latitude is zero when it is observed tangentially to the ecliptic ring in the 
same way as stars are observed tangentially to the external latitude ring 5.28
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Appendix A: The Astrolabe, the Sun and Refraction

Dreyer and Newton29 have discussed the effect of refraction in connection with 
the observation of Regulus and the Sun on 23 February 139, described by 
Ptolemy in Almagest, VII.2. Dreyer took the error due to refraction as equal to 
the Sun’s refraction in longitude. This corresponds to aligning the instrumental 
ecliptic by Method B. Newton, on the other hand, considered the observation as 
made without recourse to the Sun’s theoretical longitude (Method A). This was 
surely the reason why he rejected Dreyer’s analysis as erroneous.

To evaluate the influence of refraction upon the observed ecliptic longitude of 
the Sun, the inclination v of the ecliptic to the horizon at the moment of 
observation must be known. This angle is dependent on time and on the

Fig. 3. Aligning the ecliptic ring to the Sun at sunset close to the vernal equinox, following 
Method A. To line up the instrumental ecliptic the ecliptic ring is turned parallel to the 
equator; E is the north ecliptic pole.
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Fig. 4. The error A, = Xob5 — XR of the alignment of the ecliptic caused by refraction versus the 
solar longitude Xt. The solid and dashed lines correspond to the latitudes of Alexandria and 
Nuremberg, respectively.

geographic latitude of the observer, varying between 90° — <p — є and 90° — ip 
+ є:

cos V = sin (<p — 8M) cos є/cos 6M, (1)
where t>M denotes the declination of the culminating point of the ecliptic (the 
medium coeli).

Let us consider the two methods of setting of the ecliptic ring (Methods A and 
B). We use the following notation:
Xt the Sun’s longitude as it would be without the effects of refraction
XR the Sun’s longitude modified by the effects of refraction, i.e. the 

apparent longitude of the Sun
Xobs the Sun’s longitude in the instrumental coordinate system, after setting 

the ecliptic ring following Method A
R the total refraction at the given zenith distance of the Sun
Rx the refraction in longitude, Rx = R sin v
Rp the refraction in latitude, Rp = R cos v.
As an example of the effect of refraction in Method A let us consider sunset 
close to the vernal equinox (Figure 3). We have:30

Xobs - XR = COt E Rß /cos 4bs = R cos v cot e/cos Xobs, 
Xobs — Xt = R (cos v cot e/cos Xobs + sin v).

The difference (Xobs — XR) corresponds to the error A, in the alignment of the 
instrumental ecliptic. This error depends only on the refraction in latitude. (Xobs 
— Xt) equals the error in the observed ecliptic longitude of the Sun. It is 
composed of both Rx and R(). In general

Ai = Xob$ - XR = R cos v cot e/cos Xobs, (2)
д   ƒ R (cos V cot e/cos Xobs + sin v) for sunset ,3,

°bs t ~ | R (cos v cot e/cos Xobs — sin v) for sunrise.
Figure 4 shows31 the error A, in the alignment of the ecliptic ring following 

Method A, with two values of refraction R = 0°.2 and 0°.5 and for two
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Fig. 5. The error A of the observed longitude of the Sun versus the solar longitude. The solid and 
long-dash lines correspond to the latitudes of Alexandria and Nuremberg, respectively. 
The figure also contains the errors dH (short dashes) and dp (dashes with dots) of the solar 
theories of Hipparchus and Ptolemy.

geographical latitudes <p = 30°.4 (Alexandria) and <p = 49°.5 (Nuremberg). It 
shows the errors to be expected in the longitude of the Moon (and hence, of 
stars) for observations in Method A. The figure demonstrates that, owing to 
refraction, the measured longitudes of the Moon (and hence, of stars) near the 
vernal equinox are too large; and, around the autumnal equinox, too small. The 
least errors (< 0°.2 for Alexandria) are to be expected for observing at sunset 
close to the spring equinox (and at sunrise close to the autumn equinox). Yet, 
notwithstanding this relatively small error in the alignment of the ecliptic, the 
Sun’s longitude would be affected by an error A of over 0°.2 (R = 0°.2) and 0°.6 
(R = 0°.5) (Figure 5).

In Method В ring 5 is fixed against the ecliptic ring in a position correspond­
ing to X(5) accepted as the actual longitude of the Sun, and the system of both 
rings is turned until the Sun is located in the plane of ring 5. This leads to an 
error in the alignment of the instrumental ecliptic:

^2 = \s) ~ = (\i) — M ± W
where the signs ‘ ’ and ‘ ’ correspond to sunrises and sunsets, respectively. 
The difference (X(5J — Xt) is an error d of the assumed longitude of the Sun used 
to align the ecliptic ring. For the solar theory of Hipparchus and Ptolemy we 
have, respectively:32

dH = — O°.38 sin (Xt - 65°.5), (5)
dp = - 0°.39 sin (Xt - 65°.5) - 0°.16 cos (Xt - 65°.5) - l°.l. (6)

dH and dp are also represented in the form of diagrams in Figure 5.
It should be pointed out that in Method В the error in aligning the ecliptic 

ring is equal to the error of the solar theory when the zenith distance of the Sun 
is less than 85° (R = 0°.l). Otherwise refraction becomes a significant 
component of A2.
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Equations (4) and (6) show that in Ptolemy’s observations at sunset the 
refraction acted against the observer together with the errors of the solar theory. 
The error A2 in the alignment of the ecliptic ring was as large as from — l°.l to 
— Io.8 (for R = 0°.4). For the abpve mentioned observation of 23 February 139 
(Xt = 333°, R = 0°.4 and v = 80°) the error A, is equal to about — 1 °. 1 ( —0°.7 
resulting from the error of solar theory and — 0°.4 caused by refraction). 
Hipparchus’s solar theory produced errors smaller than in the case of Ptolemy 
by about Г.1 (in absolute magnitude).

Here the question arises as to whether the observer can detect faulty 
alignment of the ecliptic ring. In Method A it is impossible by definition. In 
Method В the Sun has non-zero latitude in the instrumental ecliptic system 
because refraction makes it practically impossible to set the Sun simultaneously 
in the planes of rings 3 and 5. This latitude depends on the discrepancy dX 
between X(5) and Xobs:

IßOI = dX cos X tan є, where dX = X(5) — Xobs.
Using symbols introduced earlier, dX can be written in the form dX = d — A. 
Close to the equinoxes

IßOI 3 0.4 dX.
From diagrams of A and dp (Figure 5) it appears that for longitudes in the 

range of 0° ± 90° the minimum value of |ßO| amounts to about 0°.4 for R = 
0°.2 and 0°.6 for R = 0°.5; this was the case with the observation of 23 February 
139. For longitudes around the autumn equinox, IßOI = 0°.3 — 0°.4. Such 
offsets of the ecliptical ring could possibly be noted by the observer.33

This phenomenon was recognised by Bernard Walther shortly after he 
commenced observations with an armillary sphere.34 The high accuracy of his 
observations of the Sun’s zenith distance with a parallactic ruler35 made it 
possible for him to obtain, for X(5, a value close to Xt. This led to IßOI = 0.4A. 
Hipparchus, if he ever used Method B, would have had no difficulty in 
simultaneously aligning rings 3 and 5 to the Sun, because of the convergence of 
A and dH. Even for observations made well away from the horizon, when 
refraction could not compensate for the error in the solar theory of Hipparchus, 
the maximum value of IßOI would not have exceeded 10', an error that lay with­
in the limits of accuracy of observation.

It should be also noticed that, unlike Method A, the error A2 in Method В of 
aligning the ecliptic ring changes in relatively narrow range, even around the 
solsticial points.
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Appendix B: Some Theory (by Jerzy Dobrzycki)

In a typical astrometric measurement of angular distances on the celestial 
sphere, errors inherent in the process of measurement and in the instrument 
itself influence the result. The quantitative discussion of this influence is the task 
of a “theory of the instrument”. Such theories became a necessary tool of 
observational astronomy at least since the inception of the modern method of 
observing and reducing observations of transits of stars (O. Romer, T. Mayer). 
Unlike the intentionally simple geometry of early modern instruments, such as 
the transit instrument, the ancient armillary astrolabe presented a highly 
complex structure combining three systems of coordinates: local (azimuth and 
altitude), equatorial (hour angle and declination) and ecliptical (longitude and 
latitude). Accordingly, there were more possible sources of error influencing the 
result of a measurement. In the following analysis we shall neglect individual 
flaws, as in the eccentricity of an astrolabe ring: such defects are easily measured

Fig. 6. Instrumental errors. NPZS is the local meridian, and PZ, the meridian ring of the 
astrolabe.
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and accounted for. It must be remembered, however, that in earlier periods the 
skill of the craftsman offered almost the only hope of reducing these errors.

In an ideal setting, an instrument has its vertical axis pointing to the zenith 
point Z (Figure 6), and its outer fixed ring lying in the meridian plane (SZPN). 
In an actual situation, the instrumental zenith is tilted by the arc ZZd defined by 
its spherical components: inclination (inc) ZZx and deviation (dev) ZjZd (by 
convention we assume the inclination positive towards south, deviation positive 
towards east). These two errors can be represented by spherical coordinates y 
and dZ = ZZd: tan (inc) = tan dZ cos xp, sin (dev) = sin dZ sin \p. Finally, the 
instrument is subject to the azimuthal error azi caused by the rotation around 
the (instrumental) vertical axis (positive if clockwise, as seen from the outside of 
the sphere). The error lat of the angular zenith distance of the (instrumental) 
pole Px is produced in the process of setting the meridian circle to the local 
geographical latitude. The combined effect of the errors inc, dev, azi and lat is 
to displace the instrumental pole from its theoretical position P by the arc dP at 
the angle % to the point Pv

In the following discussion we use the rotational operators of the spherical 
trigonometry in the form introduced by T. Banachiewicz in the 1920s (the 
“cracovians”) with p(a), q(a) and r(a) denoting rotation by the angle a around 
the X, y and z axes respectively.

The rectangular equatorial coordinates of the point P. referred to the 
instrumental coordinates are x = 0, y = 0, z = 1 ; in equatorial coordinates, 
referred to the celestial pole P and the meridian plane, x = cos x sin dP, y = 
sin x sin dP, z = cos dP.

In the spherical quadrangle PZtZàPx we have
Ґ0Л feos x sin dPT

< 0 >q(90° —ф + еат)г( —AZi)p(DEV)q[ —(90°—ф + iNc)] = < sin x sin dP >(7) V. 1J (^cos dP J
This formula defines the limits of the displacement of the instrumental pole as 

the summation of the instrumental errors inc, dev, azi and lat.
In general, the tilting of the instrumental vertical axis (by the arcs inc and 

dev) was relatively easy to control, e.g. with a simple plumbline. It was much 
more difficult to confine the errors in latitude and azimuth. The uncertainty of 
geographical latitude was a likely source of an error of several tenths of a 
degree. The determination of the azimuth remained always a difficult operation 
(and not only with an astrolabe). Briefly, one can say that the effect represented 
by Equation (7) is to make the N-S amplitude of the displacement slightly larger 
than its range in the E-W direction. In the following examples the maximum 
displacement of 0°.25 is used, somewhat arbitrarily, but surely in accord with 
practical experience.

Further analysis will depend on the mode of observations. Different factors 
influence the absolute method of determining the Sun’s position on the ecliptic 
(Method A) and other procedures, like setting the instrument to a theoretical 
longitude (Method B) or the differential (Sun — planet — star) longitude 
determination.

Method A. This method calls for bringing the plane of the instrumental 
ecliptic Y .S. (Figure 7) to coincide with the line of sight to the Sun S, its actual 
coordinates being Xs, ßs = 0 (ecliptic) and as, Ss (equatorial). The index ‘i* serves
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Fig. 7. Method A. P, P, are the celestial and instrumental poles, S is the Sun, and rf |V4 the 
instrumental ecliptic.

for the same coordinates referred to the instrumental reference frame. For the 
rectangular coordinates of the Sun we have (Figure 7):
Í cos Xs^ f cos Ѳ cos 8¡ "A

< sin Xs >p(—e) r (as + T — x) 4 (dP) = < — sin Ѳ cos 8j > (8)
(0 J L s*n J
and sin Xi = sin 8;/sin Ej (Ѳ being the positional angle measured anticlockwise 
around the point P). Computing in this way the ecliptic coordinate X. one has to 
take into account yet another instrumental error, the error of the obliquity of 
ecliptic obl: є, = к + OBL. That is,

sin X. = sin 8¡ / sin (e + obl). (9)
The obliquity of the ecliptic is fixed in the astrolabe as the angular distance 

between the pivots of the celestial and ecliptical poles of the instrument. Even in 
a perfect astrolabe, this quantity would have been affected by the error of the 
current theory: Ptolemy’s value of the obliquity produced the error obl equal to 
+ 0°.17.

Equations (8) and (9) solve the problem of determining the longitude error dX 
= (X¡ — X) as a function of instrumental errors. Thanks to the symmetry of the 
configuration with respect to the direction PPt (Figure 7) it is possible to restrict 
the discussion to the simplified case of % = 0 (the displacement of the 
instrumental pole along the meridian). The results are valid for any position 
angle X on substituting т — % for т in the following diagrams. Figure 8 has been 
obtained with the (realistic) estimate of dP = O°.25 for the simplified case of obl
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Fig. 9. Longitude errors, dP = 0°.25, de = —0°.25.
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Fig. 10. Method B. S is the Sun, Y.T the ecliptic ring, and TS the latitude ring.

= de = 0. The diagram demonstrates a fully symmetrical course of longitude 
correction in respect to cardinal points of the ecliptic. It demonstrates also the 
futility of Method A except for sunrise and sunset (t « 90° or 270°) around the 
equinoxes (X « 0° or 180°), and this only on condition that the azimuth error 
has been kept to less than about 0°.l.

The obliquity error introduces a wave dependent on longitude, making the 
map of errors, though still symmetrical, much more complex and destroying 
any possible expectations of reliable ‘absolute’ determination of longitudes. 
This is illustrated in Figure 9 with the assumed obliquity error obl = — 0°.25.

Method B. A different picture emerges when the astrolabe is used in 
conjunction with a known position to the Sun. This is Method B, in which the 
latitude ring of the astrolabe is set at the solar longitude given by the theory, and 
the assembly of ecliptic rings is then aligned to the Sun. With this configuration 
we have (Figure 10) PxS = 90° — 8p V J = Xs = X¡ (the Sun’s theoretical 
longitude); ST is the projection of the latitude ring. In general, the observed 
latitude of the Sun ßi is not zero and we have 
Ґcos Xs cos ßA /" cos or cos 8¡ A

< sin Xs cos [1 > p( —Ej) =2 sin a¡ cos 8¡ > (10)
(^sin ßi J sin 8j J

Equation (10) enables us to compute the instrumental latitude ß, knowing Xs, 
8| and Ej. This quantity is, for all practical purposes, independent of the 
longitude and (for dP = 0°.25) its range is + 0°.27 for т between 0° and ± 180°. 
This offset of the Sun’s latitude has a negligible effect on the determination of 
longitudes along the instrumental ecliptic. The same is true for the error 
introduced by the inclination of the instrumental ecliptic T .T to the plane of the 
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ecliptic Y 5. This angle is equal (Method A) or is closely approximated (Method 
B) by the angle PSP1 (Figure 7), reaching at the maximum l.ldP and producing 
a wholly negligible error in longitude of less than 6".

The use of the astrolabe for differential measurements appears thus satisfac­
torily founded. With careful handling of the instrument, external factors — the 
accuracy of the solar theory and the observing conditions (refraction) — 
become the pivotal condition for getting reliable data.
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