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Paper No 1.

The a.s. Skorohod representation

for subsequences in nonmetric spaces

Abstract

It is shown that in a large class of topological spaces every uniformly tight sequence
of random elements contains a subsequence which admits the usual a.s. Skorohod
representation on the Lebesgue interval.

1.1 The a.s. Skorohod representation

Let (X , ρ) be a Polish space and let X1, X2, . . . be random elements taking values in X and
converging in distribution to X0:

Xn −→
D

X0. (1.1)

In his famous paper [29], Skorohod proved that there exist X -valued random elements Y0, Y1,
Y2, . . ., defined on the unit interval ([0, 1],B[0,1]) equipped with the Lebesgue measure `, such
that

the laws of Xn and Yn coincide for n = 0, 1, 2, . . ., (1.2)

ρ(Yn(ω), Y0(ω))−→ 0, as n→ +∞, for each ω ∈ [0, 1]. (1.3)

Later, Dudley [7] extended the Skorohod representation to separable metric spaces, and
Wichura [38] and Fernandez [10] proved its existence in nonseparable metric spaces, provided
the limit has separable range (see also [8]). The price to be paid was larger space required by
the definition of the representation.

It may be worth to emphasize that if we restrict our attention to convergence in distri-
bution of random elements with tight (or Radon) distributions then even in arbitrary metric
spaces the a.s. Skorohod representation exists in its original shape (on [0, 1]). This is an easy
consequence of the fact that each σ-compact metric space can be homeomorphically imbedded
into a Polish space, and of Le Cam’s theorem [20] asserting that in metric spaces any sequence
{µn} of tight probability measures weakly convergent to a tight measure µ0 is uniformly tight,
i.e. for every ε > 0 there exists a compact subset Kε such that

µn(Kε) > 1− ε, n = 1, 2, . . . . (1.4)

When we leave the safe area of metrisable spaces no result on the a.s. Skorohod represen-
tation seems to be known.
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2 PAPER NO 1. SKOROHOD’S REPRESENTATION

Let us consider, for example, the weak topology τw = σ(H,H) on the infinite dimensional
separable Hilbert space (H,<,>). Suppose that Xn, n = 0, 1, . . . take values in (H,Bτw) and
that Xn −→D X0 in this space, i.e.

Ef(Xn)−→Ef(X0), as n→ +∞, (1.5)

for each bounded and weakly continuous function f : H → IR1.
We cannot find the a.s. Skorohod representation for Xn. Suppose, however, that while

checking (1.5) we applied the classical procedure based on the direct Prohorov theorem. This
means we were able to prove that for each ε > 0 there is a number Kε > 0 such that

P (‖Xn‖ > Kε) < ε, n = 1, 2, . . . , (1.6)

(uniform τw-tightness) and then we identified the limiting distribution, via e.g.

< y,Xn > −→
D

< y,X0 >, , as n→ +∞, y ∈ H. (1.7)

Consider the following theorem, which is a particular case of a much more general result
proved in Section 1.2.

Theorem 1.1.1 Let X1, X2, . . . be uniformly τw-tight, i.e. satisfy (1.6).
Then there is a subsequence {nk} and H-valued random variables Y0, Y1, . . . defined on

([0, 1],B[0,1], `) such that
Xnk

∼ Yk, k = 1, 2, . . . , (1.8)

< y, Yk(ω) > −→ < y, Y0(ω) >, as k →∞, ω ∈ [0, 1], y ∈ H. (1.9)

By the above theorem, if (1.5) and (1.6) hold, then in every subsequence
{Xnk

}k∈IN one can find a further subsequence {Xnkl
}l∈IN , for which the usual a.s. Skoro-

hod representation on the Lebesgue interval exists. Let us say that {Xn}n∈IN possesses the
a.s. Skorohod representation for subsequences.

Notice that in practice the a.s. representation for subsequences is equally useful as the
“full” representation. Typically one needs the Skorohod representation to prove convergence
in distribution of some functionals of the underlying processes (see [4] for standard examples).
In the simplest case the functional is a measurable mapping, g say, which is a.s. continuous
with respect to the limiting law L(X0). But it follows from the very definition of the weak
convergence of probability laws that g(Xn) −→D g(X0) iff in every subsequence {g(Xnk

)}k∈IN
one can find a further subsequence {g(Xnkl

)}l∈IN converging in law to g(X0). Hence it is clear
that the a.s. Skorohod representation for subsequences is just what we need.

On the other hand, Fernique [11, p.24-25] gives an example of an H-valued τw-weakly
convergent (to 0) sequence of random elements with no subsequence being uniformly τw-
tight. For such sequences our Theorem 1.1.1 cannot be applied. Nevertheless results like
Theorem 1.1.1 work perfectly in cases when weak convergence does imply uniform tightness
(e.g. in spaces of distributions - see Section 1.3) and even in the general case Theorem 1.1.1
may be applied every time we get weak convergence indirectly, i.e. first checking relative
compactness (via uniform tightness and the direct Prohorov’s theorem) and then identifying
limits.

We aim at proving a general result on the existence of the a.s. Skorohod representation
for subsequences, which covers most interesting cases, with emphasis on nonmetric spaces.
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1.2 Topological assumption and main theorem

Let (X , τ) be a topological space. Denote by “ −→τ” convergence of sequences in topology
τ . The only assumption we impose on (X , τ) is quite simple:

There exists a countable family {fi : X → [−1, 1]}i∈II of
τ-continuous functions, which separate points of X .

(1.10)

This condition is not very restrictive and possesses several nice consequences, which we list
below together with some comments.

X is a Hausdorff space (but need not be regular). (1.11)

If {xn} ⊂ X is relatively compact, and for each i ∈ II fi(xn)
converges to some number αi, then xn converges to some x0 and
fi(x0) = αi, i ∈ II.

(1.12)

K ⊂ X is compact iff it is sequentially compact (and then it is
metrisable).

(1.13)

The closure of a relatively compact subset consists of limits of its
convergent subsequences (but still need not be compact). (1.14)

Therefore in the definition of uniform τ -tightness we cannot, in general, replace sequential
compactness with measurability and relative compactness.

Finally, notice that in many cases σ(fi : i ∈ II) is just the Borel σ-algebra. In any case
compact sets are σ(fi : i ∈ II)-measurable and so every tight Borel probability measure on
(X , τ) is uniquely defined by its values on σ(fi : i ∈ II). Moreover, every tight probability
measure µ defined on σ(fi : i ∈ II) can be uniquely extended to the whole σ-algebra of Borel
sets. Hence if X : (Ω,F , P )→ X is σ(fi : i ∈ II)-measurable and the law of X (as the measure
on σ(fi : i ∈ II)) is tight, then X is Borel-measurable after P -completion of F .

By the last property, we will restrict our attention to random elements X such that
fi(X), i ∈ II, are random variables and the law of X is tight.

Theorem 1.2.1 Let (X , τ) be a sequential space satisfying (1.10) and let X1, X2, . . . be X -
valued random elements. Suppose for each ε > 0 there exists a compact subset Kε ⊂ X such
that

P (Xn ∈ Kε) > 1− ε, n = 1, 2, . . . . (1.15)

Then one can find a subsequence {Xnk
}k∈IN and X -valued random elements Y0, Y1, Y2, . . .

defined on ([0, 1],B[0,1], `) such that

Xnk
∼ Yk, k = 1, 2, . . . , (1.16)

Yk(ω) −→
τ
Y0(ω), as k →∞, ω ∈ [0, 1]. (1.17)

Proof. Assumption (1.10) gives us the mapping

X 3 x 7→ f̃(x) = (fi(x))i∈II ∈ [−1, 1]II , (1.18)

which is one-to-one and continuous, but (in general) is not a homeomorphism of X onto a
subspace of IRII . Nevertheless f̃ is a homeomorphic imbedding, if restricted to each compact
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subset K ⊂ X , and so it is a measurable isomorphism, if restricted to each σ-compact subspace
of X .

Let compact sets Km ⊂ X be such that Km ⊂ Km+1, m = 1, 2, . . . and

P (Xn ∈ Km) > 1− 1/m, n = 1, 2, . . . . (1.19)

Let µ̃n = L(f̃(Xn)) and K̃m = f̃(Km). Define on IRII an integer-valued functional

Φ(y) :=
{

min{m : y ∈ K̃m} if y ∈
⋃∞
m=1 K̃m

+∞ otherwise.
(1.20)

Clearly, Φ is lower semicontinuous, i.e.

lim inf
n→∞

Φ(yn) ≥ Φ(y0), (1.21)

whenever yn converges in IRII to y0. Further, it follows from (1.19) that Φ < +∞ µ̃n-a.s., for
each n ∈ IN , and that {µ̃n ◦ Φ−1} is a tight sequence of laws on IN . By the classical direct
Prohorov’s theorem we may extract a subsequence {nk}k∈IN such that on the space IRII × IN ,

µ̃nk
◦Ψ−1 =⇒ ν0, as k →∞,

where Ψ(y) = (y,Φ(y)).
We need a slight refinement of the original Skorohod construction [29, Lemma 3.1.1].

Lemma 1.2.2 Let S and S ′ be Polish spaces, and let Φ : S → S ′ be measurable. Suppose

(Xn,Φ(Xn)) −→
D

(X0, Y0) on S × S ′. (1.22)

Then there exist random elements X ′0, X
′
1, X

′
2, . . . (in S) and Y ′0 (in S ′) defined on the standard

probability space ([0, 1],B[0,1], `) and such that

L(X ′0, Y
′
0) = L(X0, Y0); (1.23)

L(X ′n) = L(Xn), n = 1, 2, . . . ; (1.24)
(X ′n(ω),Φ(X ′n(ω))) −→ (X ′0(ω), Y ′0(ω)) in S × S ′, (1.25)

for `-almost all ω ∈ [0, 1].

Proof of the Lemma. This is an immediate consequence of the fact that for random
elements with values in a separable metric space, the equality (X,Y ) ∼ (X,Φ(X)) implies
Y = Φ(X) a.s. (for details and the proof of a fact similar to Lemma 1.2.2 we refer to [34]).
Proof of Theorem 1.2.1 (continued). By Lemma 1.2.2 we find an IRII -valued represen-
tation X ′k such that(

X ′k(ω),Φ(X ′k(ω))
)
−→

(
X ′0(ω), Y ′0(ω)

)
`-a.s., as k →∞, (1.26)

and
L(X ′k) = L(f̃(Xnk

)), k = 1, 2, . . . . (1.27)

Since Y ′0(ω) < +∞ `-a.s., we have also

sup
k

Φ(X ′k(ω)) < +∞, `-a.s. (1.28)
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This implies that for `-almost all ω, points X ′k(ω), k = 1, 2, . . . remain inside a compact set
K̃m(ω) = f̃(Km(ω)). Hence also X ′0(ω) ∈ K̃m(ω), and moreover,

f̃−1(X ′k(ω)) −→
τ
f̃−1(X ′0(ω)).

Redefining (if necessary) X ′k on set
⋃∞
k=0(X ′k)

−1
(⋂∞

m=1 K̃
c
m

)
of `-measure 0, we obtain the de-

sired Skorohod representation for subsequence Xnk
in the form Yk = f̃−1(X ′k), k = 0, 1, 2, . . . .

Notice that the distribution of Y0 is tight: since Φ is lower semicontinuous we have

Φ(X ′0(ω)) ≤ Y ′0 a.s.,

and so

P (Y0 6∈ Km) = P (f̃−1(X ′0) 6∈ Km)
= P (Φ(X ′0) > m)
≤ P (Y ′0 > m)→ 0 as m→ +∞.

1.3 Some examples

Clearly, Theorem 1.1.1 is an example of application of Theorem 1.2.1. One can go further in
this direction.

Theorem 1.3.1 Let E be a separable Banach space and let E′ be its topological dual. If
X1, X2, . . . are E′-valued random elements such that the sequence {‖Xn‖} of real random
variables is bounded in probability, then along some subsequence {nk} there exists the Skorohod
representation Yk, k = 0, 1, 2, . . . such that

< x, Yk(ω) > −→ < x, Y0(ω) >, as k →∞, x ∈ E, ω ∈ [0, 1]. (1.29)

Somewhat different results arise when we consider S ′-valued (or D′-valued) random ele-
ments or, more generally, random elements with values in the topological dual to a Frechét
nuclear space (or to the strict inductive limit of a Frechét nuclear spaces).

For the sake of brevity we will formulate here results for the simpler case only. Let Φ be
a Frechét nuclear space (see e.g. [28]). Let ‖ · ‖1 ≤ ‖ · ‖2 ≤ . . . be an increasing sequence of
Hilbertian seminorms defining the topology on Φ. Denote by (Φp, ‖ · ‖p) the Hilbert space
arising by completion of the quotient space Φ/‖ · ‖p and by (Φ′−p, ‖ · ‖−p) the topological dual
of (Φp, ‖ · ‖p). After obvious identification, Φ′−p is a subset of Φ′ and Φ′ =

⋃∞
p=1 Φ′−p. Φ′ is

equipped with the strong topology β, which on every Φ−p is strictly weaker than the Hilbert
topology of the norm ‖ · ‖−p. The point is that the convergence of sequences in topology β
may be defined in the following way:

xn−→
β
x0 iff ‖xn − x0‖−p → 0, as n→ +∞, for some p ∈ IN . (1.30)
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Theorem 1.3.2 Let Φ′ be the topological dual of a Frechét nuclear space Φ and let X1, X2, . . .
be random elements with values in Φ′. Suppose that for every φ ∈ Φ random variables
< φ,Xn >, n = 1, 2, . . . are uniformly tight. Then there exists a subsequence nk and the
Skorohod representation Y0, Y1, Y2, . . . for this subsequence such that for each ω ∈ [0, 1] one
can find a number p(ω) ∈ IN with the property that

‖Yk(ω)− Y0(ω)‖−p(ω)−→ 0, as k →∞. (1.31)

Proof. Standard arguments of the Minlos-Sazonov-type (see e.g. [22] or [11]) show that
in Φ′ “weak uniform tightness” implies usual uniform tightness: for each ε > 0 there are
numbers qε ∈ IN and Kε > 0 such that

P (‖Xn‖−qε ≤ Kε) > 1− ε. (1.32)

Corollary 1.3.3 Any sequence convergent in distribution on S ′ or D′ admits the a.s. Sko-
rohod representation for subsequences.

Proof. It is proved in [11] that on S ′ or D′ relative compactness (in distribution) is equivalent
to uniform tightness.

Notice that our Theorem 1.2.1 may be viewed as the strong version of the direct Prohorov’s
theorem. Indeed, if f : X → IR1 is bounded and continuous and Y0, Y1, Y2, . . . form the
Skorohod representation for {Xnk

}, then

Ef(Xnk
) = Ef(Yk)−→Ef(Y0), as n→ +∞, (1.33)

and so L(Xnk
) weakly converges to L(Y0) in the classical sense. But (1.33) holds also for

all sequentially continuous and bounded f ! It means that in the nonmetric case the direct
Prohorov’s theorem may give relative compactness in the stronger topology than the original
one. Similar observation can be found in [11] where it was proved that convergence in dis-
tribution on D′ equipped with the weak topology coincides with convergence in distribution
with respect to the strong topology. This is not surprising in view of the fact that convergence
of sequences in the weak topology on D′ (and S ′) implies convergence in the strong topology.

The above remarks may also suggest that identifying convergence in distribution with
weak convergence of laws is not completely justified for some quite good spaces. We refer to
Paper II for further discussion on this topic.

Finally let us mention that one of the main motivations to prove Theorem 1.2.1 was to deal
with “really” sequential topology on the Skorohod space ID. The reader may find information
on this non-Skorohod and nonmetric topology in Paper III.

Acknowledgment. The author would like to thank T. Bojdecki, B. Go ldys and S. Kwapień for
valuable discussions, which influenced the paper in various ways.



Paper No 2.

A unification

of Prohorov’s and Skorohod’s ideas:

convergence in distribution in nonmetric spaces

Abstract

A new topology has been defined on the space P(X ) of tight probability distribu-
tions on a topological space (X , τ). The only topological assumption imposed on
(X , τ) is that some countable family of continuous functions separates points of
X . This new sequential topology, defined by means of a variant of the a.s. Skoro-
hod representation, is quite operational and from the point of view of nonmetric
spaces proves to be more satisfactory than the weak topology. In particular, in this
topology both the direct and the converse Prohorov’s theorems are quite natural
and hold in many spaces. The topology coincides with the usual topology of weak
convergence in case when (X , τ) is a metric space.

2.1 Convergence in distribution of random elements

It is a traditional point of view that the kind of convergence of probabilities encountered in
weak limit theorems of probability theory is exactly the “weak convergence” of distributions
of random elements, i.e. convergence Xn −→D X0 is defined as

Ef(Xn)−→Ef(X0), as n→ +∞, (2.1)

for each bounded and continuous function f defined on the space X , in which X0, X1, . . .
take values (f ∈ CB(X )). Since the distributions PXn = P ◦ X−1

n are measures on some
σ-algebra of subsets of X (usually on the Borel or Baire σ-algebras), there is a tendency to
avoid probabilistic formulation and consider an abstract convergence µn =⇒µ0 rather than
(2.1), where µn =⇒µ0 means∫

X
f(x)µn(dx)−→

∫
X
f(x)µ0(dx), f ∈ CB(X ). (2.2)

The most successful step towards the abstract setting was done by Prohorov in his fun-
damental paper [26], and the complete theory when X is a Polish space has been given in
excellent books by Parthasarathy [24] and Billingsley [3]. Within this theory, the crucial
method for proving weak convergence is the following “three-stage procedure”:

1. Check relative compactness of {µn}, i.e. whether every subsequence {µnk
} contains a

further subsequence {µnkl
} weakly convergent to some limit.

7
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2. By some other tools (characteristic functionals, finite dimensional convergence, martin-
gale problem, etc.) identify all limiting points of weakly convergent subsequences {µnk

}
with some distribution µ0.

Then conclude µn =⇒µ0.

It is worth to emphasize that this reasoning is based on the following property of the weak
convergence (obvious, when definition (2.2) is in force):

If every subsequence {µnk
} contains a further subsequence {µnkl

} weakly
convergent to µ0, then the whole sequence {µn} converges weakly to µ0.

(2.3)

The main Prohorov’s contribution was providing a very efficient criterion of relative com-
pactness. Due to the direct Prohorov’s theorem, a family {µi}i∈II of probability laws on a
metric space (S,BS) is relatively compact, if it is uniformly tight, i.e. for every ε > 0 there is
a compact set Kε ⊂ S such that

µi(Kε) > 1− ε, i ∈ II. (2.4)

The converse Prohorov’s theorem states that in Polish spaces relative compactness implies
uniform tightness.

There exist, however, separable metric spaces for which the converse Prohorov’s theorem is
not valid [5], with rational numbers Q being the most striking example [25]. Let us notice that
every probability measure on (Q,BQ) must be tight, and so, by LeCam’s theorem ([20], [3])
weak convergence of probability measures on Q implies uniform tightness. LeCam’s theorem
holds also in arbitrary metric spaces, provided we restrict weak convergence to the space
P(X ) of tight probability measures on X . We may summarize the theory for metric spaces by
saying that in P(X ) relative compactness is equivalent to relative uniform tightness, with the
latter meaning that in every subsequence there is a further subsequence which is uniformly
tight.

After leaving the (relatively) safe area of metric spaces, the abstract setting brings many
disturbing problems, even if we remain in the world of random elements with tight distribu-
tions. Let us consider, for example, the infinite dimensional separable Hilbert space (H,<,>)
equipped with the weak topology τw = σ(H,H). It is a completely regular space (for it is a
linear topological space), and since H with the norm topology is Polish, (H, τw) is also Lusin
in the sense of Fernique (“espace séparé” in [11]). But Fernique [11] gives an example of an
H-valued sequence {Xn} satisfying

Ef(Xn)−→ f(0), as n→ +∞, (2.5)

for each bounded and weakly continuous function f : H → IR1, and such that for each K > 0

lim inf
n→+∞

P (‖Xn‖ > K) = 1. (2.6)

This means that on the space (H, τw) there are weakly convergent sequences (to µ0 = δ0 in
(2.5)) with no subsequence being uniformly tight. It follows that the approach based on the
direct Prohorov’s theorem is no longer a universal tool for the weak convergence on neither
completely regular nor Lusin spaces.
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Nevertheless, since compacts in (H, τw) are metrisable, the direct Prohorov’s theorem
remains valid in (H, τw) (see [32]). But again the picture is not clear, since uniform tightness
on (H, τw), i.e.

lim
K→+∞

sup
n
P (‖Xn‖ > K) = 0, (2.7)

implies relative compactness in topology strictly finer than the topology of weak convergence
of measures on (H, τw), namely the topology of weak convergence of measures on H equipped
with the sequential topology (τw)s of weak convergence of elements of H. The direct proof
of this fact is not difficult, but it seems to be more instructive to apply Theorem 1.1.1 from
Paper I, which asserts that every sequence satisfying (2.7) contains a subsequence {Xnk

}
which admits the a.s. Skorohod representation: one can define on the Lebesgue interval
([0, 1],B[0,1], `) H-valued random elements Y0, Y1, . . . such that

Xnk
∼ Yk, k = 1, 2, . . . (2.8)

and for each y ∈ H and each ω ∈ [0, 1]

< y, Yk(ω) > −→ < y, Y0(ω) >, as k →∞. (2.9)

By the last line, for every sequentially weakly continuous function f : H → IR1 we have
f(Yk(ω))→ f(Y0(ω)), ω ∈ [0, 1], and if f is bounded,

Ef(Xnk
) = Ef(Yk)−→Ef(Y0), as k →∞. (2.10)

One may rise a question whether there is a general notion of convergence in distribution
which on a broad class of topological spaces shares the advantageous properties of the weak
convergence of probability measures on metric spaces with respect to Prohorov’s theorems.

In this paper we suggest a new definition of the convergence in distribution of random
elements with tight laws, ∗=⇒ say, which is defined by means of a variant of the a.s. Skorohod
representation:

µn
∗=⇒ µ0 iff every subsequence {nk} contains a further subsequence

{nkl
} such that µ0 and {µnkl

: l = 1, 2, . . .} admit a Skorohod repre-
sentation defined on the Lebesgue interval and almost surely convergent
“in compacts”.

(2.11)

(For precise definitions we refer to Section 2.3). Somewhat unexpectedly, this apparently very
strong definition may be applied in most cases of interest, is quite operational and proves to
be more satisfactory from the point of view of nonmetric spaces. In particular, P(X ) equipped
with the sequential topology determined by ∗=⇒ has the following remarkable properties:

• “relatively compact” set of tight probability measures means exactly “relatively uni-
formly tight” (Theorem 2.3.5, Section 2.3);

• the converse Prohorov’s theorem is quite natural and holds in many spaces (Theorems
2.4.1 – 2.4.5 and 2.4.7, Section 2.4);

• no assumptions like the T3 (regularity) property are required for the space X , what is
very important in applications to sequential spaces (Section 2.2);

• on metric spaces the theory of the usual weak convergence of tight probability distribu-
tions remains unchanged (Corollary 2.3.8, Section 2.3).
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2.2 Topological preliminaries

Let (X , τ) be a topological space. Denote the convergence of sequences in τ -topology by
“ −→τ” and by “τs” the sequential topology generated by τ -convergence. Recall that

F ⊂ X is τs-closed if F contains all limits of τ -convergent sequences of
elements of F .

(2.12)

Our basic assumption is:

There exists a countable family {fi : X → [−1, 1]}i∈II of
τ-continuous functions, which separate points of X .

(2.13)

This condition is not restrictive and possesses several important implications which allow
to built an interesting theory. As the most immediate consequence we obtain a convenient
criterion for τ -convergence:

If {xn} ⊂ X is relatively compact, and for each i ∈ II fi(xn) converges to
some number αi, then xn τ -converges to some x0 and fi(x0) = αi, i ∈ II.

(2.14)

Assumption (2.13) defines a continuous mapping f̃ : X → [−1, 1]II given by formula

f̃(x) = (fi(x))i∈II . (2.15)

By the separation property of the family {fi}i∈II

X is a Hausdorff space (but need not be regular). (2.16)

There is an example of Hausdorff non-regular space, which will be referred to as “standard”
and which is also suitable for our needs: take X = [0, 1] and let the family of closed sets be
generated by all sets closed in the usual topology and one extra set A = {1, 1

2 ,
1
3 ,

1
4 , . . .}. Then

X is not a regular space [18], but still satisfies (2.13).
Let us observe that for any compact set K ⊂ X the image f̃(K) ⊂ [−1, 1]II is again

compact and since K = f̃−1(f̃(K)) we get

Every compact subset is σ(fi : i ∈ II)-measurable (hence is a Baire
subset of X ) and is metrisable.

(2.17)

In many cases σ(fi : i ∈ II) is just the Borel σ-algebra. In any case every tight Borel
probability measure on (X , τ) is uniquely defined by its values on σ(fi : i ∈ II). Moreover,
every tight probability measure µ defined on σ(fi : i ∈ II) can be uniquely extended to the
whole σ-algebra of Borel sets. Hence if X : (Ω,F , P )→ X is σ(fi : i ∈ II)-measurable and the
law of X (as the measure on σ(fi : i ∈ II)) is tight, then X is Borel-measurable if we replace
F with its P -completion F . In particular, if {f ′i}i∈II′ is another family satisfying (2.13), then
X : (Ω,F , P )→ X is σ(f ′i : i ∈ II ′)-measurable.

The above remarks show that our considerations do not depend essentially on the choice of
the family {fi}i∈II satisfying (2.13). Therefore without loss of generality we may fix some fam-
ily {fi}i∈II and shall restrict the attention to random elements X such that fi(X), i ∈ II,
are random variables and the law of X is tight, and to tight probability measures
defined on σ(fi : i ∈ II). As in Section 2.1, the family of such measures will be denoted by
P(X ).
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Every tight probability measure on X is the law of some
X -valued random element defined on the standard probability space
([0, 1],B[0,1], `).

(2.18)

To see this, let us notice that f̃ is one-to-one and continuous, but (in general) is not a
homeomorphism of X onto a subspace of [0, 1]II . Nevertheless f̃ is a homeomorphic imbedding,
if restricted to each compact subset K ⊂ X , and so it is a measurable isomorphism, if restricted
to each σ-compact subspace of X . If µ is a tight probability measure, then it is concentrated on
some σ-compact subspace X1 of X , and µ◦f̃−1 is a probability measure on [0, 1]II , concentrated
on the σ-compact subspace f̃(X1). But it is well-known (see e.g. [4]) that then there exists a
measurable mapping Y : [0, 1]→ [0, 1]II such that

µ ◦ f̃−1 = ` ◦ Y −1, (2.19)

and, in particular, Y ∈ f̃(X1) with probability one. It remains to take any x0 ∈ X1 and define

X(ω) =
{
f̃−1(Y (ω)), if Y (ω) ∈ f̃(X1);

x0, otherwise.
(2.20)

Using somewhat subtler reasoning than the one used in the proof of (2.17) we see that for
relatively compact K ⊂ X , the set f̃−1(f̃(K)) is both a τ -closed subset of X and the closure
of K in the sequential topology τs. Hence we have

The closure of a relatively compact subset consists of limits of its con-
vergent subsequences (but still need not be compact). (2.21)

Here again the standard example exhibits the pathology signalized in (2.21): the whole space
[0, 1] is not compact, but it is a closure of a relatively compact set [0, 1] \ A. Remark (2.21)
affects the definition of uniform tightness where we cannot, in general, replace sequential
compactness with measurability and relative compactness. In a similar way as (2.21) one can
prove

K ⊂ X is compact iff it is sequentially compact. (2.22)

This in turn implies that

The sequential topology τs is the finest topology on X in which compact
subsets are the same as in τ .

(2.23)

To prove (2.23) let us observe first that (X , τs) also satisfies (2.13), for τ -continuity implies
sequential τ -continuity and so τs-continuity. By (2.22) compactness and sequential compact-
ness are equivalent for both τ and τs. Since sequential compactness in τ and τs coincide, τs
preserves the family of τ -compact subsets. It remains to prove that if τ ′ ⊃ τ , τ ′-compacts
coincide with τ -compacts and F is a τ ′-closed subset, then F is τs-closed, i.e. satisfies (2.12).
Suppose {xn} ⊂ F and xn −→τ x0. Let K = {x0, x1, x2, . . .}. Then K is τ -compact, hence
also τ ′-compact. In particular, F ∩ K is τ ′-compact, hence τ -compact, hence sequentially
τ -compact, hence x0 ∈ K ∩ F ⊂ F and F ∈ τs.

The important corollary to (2.23) is

Any uniformly τ -tight sequence of random elements in X is uniformly
τs-tight.

(2.24)
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Facts like (2.23) and (2.24) suggest that whenever we deal with uniform tightness (or
Prohorov’s theorem) sequential spaces satisfying (2.13) may be of special importance.

To define an “abstract” sequential topology on X one needs the notion of “convergence”
of sequences.

2.2.1 Basic facts about L- and L∗- convergencies

We say that X is a space of type L (Fréchet, [13]), if among all sequences of elements of
X a class C(→) of “convergent” sequences is distinguished, and to each convergent sequence
{xn}n∈IN exactly one point x0 (called “limit”: xn−→x0) is attached in such a way that

For every x ∈ X , the constant sequence (x, x, . . .) is convergent
to x.

(2.25)

If xn−→x0 and 1 ≤ n1 < n2 < . . ., then the subsequence {xnk
} con-

verges, and to the same limit: xnk
−→x0, as k →∞. (2.26)

It is easy to see that in the space X of type L the statement paralleling (2.12):

F ⊂ X is closed if F contains all limits of “−→”-convergent sequences
of elements of F .

(2.27)

defines a topology, O(→) say. This topology defines in turn a new (in general) class of
convergent sequences, which can be called convergent “a posteriori” (Urysohn, [37]), in order
to distinguish from the original convergence (= convergence “a priori”). So {xn} converges
a posteriori to x0, if for every open set G ∈ O(→) eventually all elements of the sequence
{xn} belong to G. Kantorowich et al [16, Theorem 2.42, p. 51] and Kisyński [17] proved that
this is equivalent to the following condition:

Every subsequence xn1 , xn2 , . . . of {xn} contains a further subsequence
xnk1

, xnk2
, . . . convergent to x0 a priori. (2.28)

We see that convergence a posteriori shares property (2.3) with the weak convergence of
measures, i.e. satisfies condition

If every subsequence xn1 , xn2 , . . . of {xn} contains a further subsequence
xnk1

, xnk2
, . . . convergent to x0, then the whole sequence {xn} is conver-

gent to x0.
(2.29)

If the L-convergence “−→” satisfies also (2.29), then we say that X is of type L∗ and will de-
note such convergence by “ ∗−→”. Within this terminology, another immediate consequence of
Kantorovich-Kisyński’s theorem is that in spaces of type L∗ convergence a posteriori coincides
with convergence a priori.

It follows that given convergence “−→” satisfying (2.25) and (2.26), we can weaken this
convergence to convergence “ ∗−→” satisfying additionally (2.28), and the latter convergence is
already the usual convergence of sequences in the topological space (X ,O(→)) ≡ (X ,O( ∗→)).
At least two examples of such a procedure are well-known:

Example 2.2.1 If “−→” denotes the convergence “almost surely” of real random variables
defined on a probability space (Ω,F , P ), then “ ∗−→” is the convergence “in probability”.



2.3. THE SEQUENTIAL TOPOLOGY 13

Example 2.2.2 Let X = IR1 and take a sequence εn ↘ 0. Say that xn−→x0, if for each
n ∈ IN , |xn − x0| < εn, i.e. xn converges to x0 at given rate {εn}. Then “ ∗−→” means usual
convergence of real numbers.

The following obvious properties of sequential spaces will be used throughout the paper
without annotation:

A set K ⊂ X is “−→”-relatively compact iff it is “ ∗−→”-relatively com-
pact.

(2.30)

A function f on X is O( ∗→)-continuous iff it is “ ∗−→”-sequentially contin-
uous (equivalently: “−→”-sequentially continuous), i.e. f(xn) converges
to f(x0) whenever xn

∗−→ x0 (or xn−→x0).
(2.31)

Finally, let us notice that if (X , τ) is a Hausdorff topological space, then τ ⊂ τs ≡ O(→τ ),
and in general this inclusion may be strict. In particular, the space of sequentially continuous
functions may be larger than the space of τ -continuous functions.

For more information on sequential spaces we refer to [9] or [2].

2.3 The sequential topology of the convergence in distribution

The reason we are interested in topological spaces satisfying (2.13) is Theorem 1.2.1 from
Paper I (restated below) which may be considered both as a strong version of the direct
Prohorov’s theorem and a generalization of the original Skorohod construction [29].

Theorem 2.3.1 Let (X , τ) be a topological space satisfying (2.13) and let {µn}n∈IN be a
uniformly tight sequence of laws on X . Then there exists a subsequence n1 < n2 < . . . and
X -valued random elements Y0, Y1, Y2, . . . defined on ([0, 1],B[0,1], `) such that

Xnk
∼ Yk, k = 1, 2, . . . , (2.32)

Yk(ω) −→
τ
Y0(ω), as k →∞, ω ∈ [0, 1]. (2.33)

Let us notice that contrary to the metric case under (2.13) alone we do not know whether
the set of convergence

{ω : Yk(ω) −→
τ
Y0(ω), as k →∞}

is measurable. What we know is measurability of sets of the form

C(K) = {ω : Yk(ω) −→
τ
Y0(ω), as k →∞} ∩

∞⋂
k=1

{ω : Yk(ω) ∈ K}, (2.34)

where K ⊂ X is compact. This becomes obvious when we observe that by property (2.14)
we have

C(K) = {ω : f̃(Yk(ω))→ f̃(Y0(ω)), as k →∞} ∩
∞⋂
k=1

{ω : Yk(ω) ∈ K}.

Now suppose for each ε > 0 there is a compact set Kε such that

P (C(Kε)) > 1− ε. (2.35)

Then the set of convergence contains a measurable set of full probability and one can say that
Yk converges to Y0 almost surely “in compacts”. In particular we have
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Corollary 2.3.2 Convergence almost surely “in compacts” implies uniform tightness.

The a.s. convergence (2.33) has been established exactly the way described above. If the
representation Y0, Y1, Y2, . . . satisfies (2.32) and the convergence (2.33) is strengthened to the
almost sure convergence “in compacts”, then we will call it “the strong a.s. Skorohod
representation”. Using this terminology we may rewrite Theorem 2.3.1 in the following
form:

Theorem 2.3.3 Let (X , τ) be a topological space satisfying (2.13) and let {µn}n∈IN be a
uniformly tight sequence of laws on X . Then there exists a subsequence µn1 , µn2 , . . . which
admits the strong a.s. Skorohod representation defined on ([0, 1],B[0,1], `).

We are also ready to give a formal definition of the convergence “ ∗=⇒” introduced in
Section 2.1 for elements of P(X ):

µn
∗=⇒ µ0 if every subsequence {nk} contains a further subsequence

{nkl
} such that µ0, µn1 , µn2 , . . . admit the strong a.s. Skorohod repre-

sentation defined on the Lebesgue interval.
(2.36)

As an immediate corollary to Theorem 2.3.3 we obtain the direct Prohorov’s theorem for
“ ∗=⇒”.

Theorem 2.3.4 If (X , τ) satisfies (2.13), then in P(X ) relative uniform tightness implies
relative compactness with respect to “ ∗=⇒”.

The space P(X ) with the induced convergence “ ∗=⇒” is of L∗ type, i.e. “ ∗=⇒” satis-
fies (2.25), (2.26) and (2.29). Notice that (2.25) holds by (2.18), and that (2.29) is exactly
condition (2.3) which allows to apply the standard “three-stage procedure” of verifying con-
vergence.

Let us say that the topology O( ∗=⇒) is “induced by the strong a.s. Skorohod representa-
tion”.

By the reasoning similar to the one given before (2.10), we see that for any sequentially
continuous and bounded function f : (X , τs)→ IR1, the mapping

P(X ) 3 µ 7→
∫
X
f(x)µ(dx) ∈ IR1, (2.37)

is sequentially continuous (hence: continuous) with respect to O( ∗=⇒). In particular, O( ∗=⇒)
is finer than the sequential topology given by the usual weak convergence of elements of
P(X , τs). The standard example shows that in general these two topologies do not coincide.
But even if they do, the definition using the strong a.s. Skorohod representation is more oper-
ational. Moreover, we have a nice characterization of relative ∗=⇒-compactness, as announced
in Section 2.1.

Theorem 2.3.5 Suppose (X , τ) satisfies (2.13). Then the topology O( ∗=⇒) induced by the
strong a.s. Skorohod representation is the only sequential topology O on P(X ) satisfying:

O is finer than the topology of weak convergence of measures. (2.38)

The class of relatively O-compact sets coincides with the class of rela-
tively uniformly τ -tight sets.

(2.39)
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Proof. Relation (2.39) gives us the family of relatively compact subsets and (2.38) helps us
to identify limiting points. This information fully determines an L∗-convergence.

Remark 2.3.6 Analysing Fernique’s example quoted in Introduction shows that (2.39) is
not valid in the space P((H, τw)) equipped with the topology of weak convergence. It follows
the topology O( ∗=⇒) may be strictly finer than the topology of weak convergence (or weak
topology) on P(X ) and the converse Prohorov’s theorem holds in many spaces — see section
2.4.

Remark 2.3.7 In many respects the topological space (P(X ),O( ∗=⇒)) is as good as (X , τ)
is: the property (2.13) is hereditary. To see this, take as the separating functions

h(i1,i2,...,im)(µ) =
∫
X
fi1(x)fi2(x) . . . fim(x)µ(dx), (2.40)

for all finite sequences (i1, i2, . . . , im) of elements of II. Hence we may consider within our
framework “random distributions” as well.

Theorem 2.3.5 does not contain the case of an arbitrary metric space, since in nonseparable
spaces condition (2.13) may fail. However we have

Corollary 2.3.8 If X is a metric space, then in P(X ) the weak topology and O( ∗=⇒) coin-
cide.

Proof. Let us observe that in P(X ) the a.s. Skorohod representation for full sequences
does exist. This is an easy consequence of the fact that each σ-compact metric space can be
homeomorphically imbedded into a Polish space, and of LeCam’s theorem [20], [3]. Following
the proof of LeCam’s theorem one can also prove that in metric spaces almost sure convergence
of random elements with tight laws implies almost sure convergence “in compacts”. Hence in
P(X ) the sequential topology of weak convergence and O( ∗=⇒) coincide. But it is well known
[3] that the weak topology on P(X ) is metrisable and so is sequential.

Remark 2.3.9 One may prefer the stronger convergence defined by means of the Skorohod
representation for the full sequence: µn =⇒Sk µ0 if on ([0, 1],B[0,1], `) there exists the strong
a.s. Skorohod representation Y0, Y1, . . . for µ0, µ1, . . .. However, by the very definition “=⇒Sk”
is only L-convergence and so is not a topological notion, while “ ∗=⇒” is the L∗-convergence
obtained from “=⇒Sk” by Kantorovich-Kisyński’s recipe (2.28).

Remark 2.3.10 The definition of the topology induced by the strong a.s. Skorohod repre-
sentation may seem to be not the most natural one. But O( ∗=⇒) fulfills all possible “portman-
teau” theorems (see [36]), coincides with weak convergence on metric spaces and by means of
the Prohorov’s theorem is operational and easy in handling.

2.4 Criteria of compactness and the converse Prohorov’s the-
orem

To make the direct Prohorov’s theorem working, one needs efficient criteria of checking se-
quential compactness. It will be seen that given such criteria relative uniform tightness is
equivalent to uniform tightness and the converse Prohorov’s theorem easily follows.
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We begin with spaces (X , τ) possessing a fundamental system of compact subsets, i.e. an
increasing sequence {Km}m∈IN of compact subsets of X such that every convergent sequence
xn −→τ x0 is contained in some Km0 (equivalently: every compact subset is contained in
some Km0). Locally compact spaces with countable basis serve here as the most important,
but not the only example. For instance, balls Km = {x : ‖x‖ ≤ m} form the fundamental
system of compact subsets in a Hilbert space H with either the weak topology τw or the
sequential topology (τw)s generated by the weak convergence in H. The same is true in a
topological dual E′ of a separable Banach space E.

Theorem 2.4.1 Suppose that (X , τ) satisfies (2.13) and possesses a fundamental system
{Km} of compact subsets. Then for K ⊂ P(X ) the following statements are equivalent:

K is ∗=⇒-relatively compact. (2.41)

K is uniformly τ -tight. (2.42)

Proof. In view of Theorem 2.3.4 we have to prove that (2.41) implies (2.42). Suppose (2.42)
does not hold. Then there is ε > 0 such that for each m one can find µm ∈ K satisfying

µm(Kc
m) > ε. (2.43)

By ∗=⇒-relative compactness there exists a subsequence µmk
admitting a strong a.s. Skorohod

representation. By Corollary 2.3.2 {µmk
}k∈IN is uniformly tight. This contradicts (2.43).

As the next step we will consider a more general scheme in which compactness means
boundedness with respect to some countable family of lower semicontinuous functionals. More
precisely, we suppose that there exists a countable family of measurable nonnegative func-
tionals {hk}k∈IK such that

sup
x∈K

hk(x) < +∞, k ∈ IK, (2.44)

implies relative compactness of K, and if xn −→τ x0 then

hk(x0) ≤ lim inf
n→∞

hk(xn) < +∞, k ∈ IK. (2.45)

Notice that under (2.45) any relatively compact set K satisfies (2.44) and is contained in
some set of the form

K =
⋂
k∈IK
{x : hk(x) ≤ Ck}. (2.46)

Moreover, under both (2.44) and (2.45) every set of the form (2.46) is sequentially compact.

Theorem 2.4.2 Let (X , τ) satisfies (2.13). Suppose compactness in (X , τ) is given by
boundedness with respect to a countable family {hk}k∈IK of lower semicontinuous functionals.
Then for K ⊂ P(X ) the following conditions are equivalent:

K is ∗=⇒-relatively compact. (2.47)

K is uniformly τ -tight. (2.48)

For each k ∈ IK the set {µ ◦ h−1
k : µ ∈ K} ⊂ P(IR+) is uniformly tight,

i.e.
lim
C→∞

sup
µ∈K

µ({x : hk(x) > C}) = 0. (2.49)
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Proof. Conditions (2.48) and (2.49) are obviously equivalent and implication (2.48)⇒ (2.47)
is proved in Theorem 2.3.4. In order to prove that (2.47) implies (2.49) suppose that for some
k ∈ IK there is ε > 0 such that for each N one can find µN ∈ K with the property

µN ({x : hk(x) > N}) ≥ ε, N ∈ IN. (2.50)

If some subsequence of µN admits a strong a.s. Skorohod representation, it must be uniformly
tight and (2.50) cannot hold along this subsequence. This shows that K is not ∗=⇒-relatively
compact.

It is worth to emphasize that Theorem 2.4.2 completely generalizes the ordinary converse
Prohorov’s theorem. To see this, take Polish space (X , ρ) and choose in it a countable dense
subset D = {x1, x2, . . .}. Set for k ∈ IN

hk(x) = inf{N : x ∈
N⋃
i=1

Kρ(xi, 1/k).

Then every functional hk is bounded on K ⊂ X if, and only if, K is totally ρ-bounded, hence
conditionally compact by completeness of (X , ρ). The property (2.45) follows by the very
definition of hk.

Topologically complete spaces and non-metrisable σ-compact spaces like (H, τw) does not
end the list of cases covered by Theorem 2.4.2. For example on the Skorohod space ID([0, 1] :
IR1) there exists (see Paper III) a minimal functional topology which is non-metrisable but
satisfies (2.44) and (2.45), hence by our Theorem 2.4.2 is as good as Polish space (at least
from the probabilistic point of view). In fact, the present paper may be considered as an
attempt to find a general framework in which that topology can be placed naturally.

“Countable boundedness” is not a universal criterion for compactness. In general we do
not know any criterion which could pretend to universality. Therefore any particular case
must be carefully analysed. We will show three examples of such an analysis.

The first type of results has been suggested by topologies on function spaces in which
conditional compactness can be described in terms of “moduli of continuity”. A rough gen-
eralization is that on a topological space (X , τ) a double array {gk,j}k∈IK,j∈IN (where IK is
countable) of nonnegative measurable functionals is given and that the functionals possess
the following properties:

gk,j+1 ≤ gk,j , k ∈ IK, j ∈ IN. (2.51)

If xn −→τ x0 then for each k ∈ IK

lim
j→∞

sup
n
gk,j(xn) = 0. (2.52)

If for each k ∈ IK
lim
j→∞

sup
x∈K

gk,j(x) = 0,

then K ⊂ X is conditionally compact.

(2.53)

Clearly, the new scheme contains the previous one. If we set

gk,j(x) =
1
j
hk(x), k ∈ IK, j ∈ IN,
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then (2.45) implies (2.52) and (2.44) and lower semicontinuity of hk give conditional com-
pactness in (2.53). Recall that in general in spaces satisfying (2.13) relative compactness does
not imply conditional compactness. In metric spaces, however, it does and so e.g. Skorohod
topology J2 [29] (and not only J1) satisfies the converse Prohorov theorem, as we can see
from the following result.

Theorem 2.4.3 Let (X , τ) satisfies (2.13). Suppose conditions (2.51) – (2.53) determine
conditional compactness in (X , τ). Then for K ⊂ P(X ) the following conditions are equiva-
lent:

K is ∗=⇒-relatively compact. (2.54)

K is uniformly τ -tight. (2.55)

For each k ∈ IK

lim
j→∞

sup
µ∈K

µ({x : gk,j(x) > ε}) = 0, ε > 0. (2.56)

Proof. Similarly as before, it is enough to show that if (2.56) is not satisfied then one can
find in K a sequence with no subsequence admitting a strong a.s. Skorohod representation.
Let us observe first that if Xl −→τ X0 a.s. and jl → ∞ then by (2.51) and (2.52), for each
k ∈ IK and almost surely,

lim sup
l→∞

gk,jl(Xl) ≤ lim
j→∞

lim sup
l→∞

gk,j(Xl) = 0. (2.57)

If (2.56) is not satisfied, then there are k ∈ IK and ε > 0 such that for each j ∈ IN one can
find µj ∈ K satisfying

µj({x : gk,j(x) > ε}) ≥ ε. (2.58)

If Xl is the a.s. Skorohod representation for some subsequence µjl then by (2.57)

µjl({x : gk,jl(x) > ε})→ 0,

hence (2.58) cannot hold.
The second type of results is motivated by the structure of compact subsets in the space

of distributions S ′ or, more generally, the topological dual of a Fréchet nuclear space.
Suppose that on (X , τ) there exists a decreasing sequence {qm}m∈IN of nonnegative mea-

surable functionals such that

K ⊂ X is conditionally compact if for some m0 ∈ IN

sup
x∈K

qm0(x) ≤ Cm0 < +∞. (2.59)

Notice this implies
sup
m≥m0

sup
x∈K

qm(x) ≤ Cm0 ,

but it may happen that for some m < m0

sup
x∈K

qm(x) = +∞.
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Theorem 2.4.4 Let (X , τ) satisfies (2.13) and (2.59). Then for K ⊂ P(X ) the following
conditions are equivalent:

K is ∗=⇒-relatively compact. (2.60)

K is uniformly τ -tight. (2.61)
For each ε > 0 one can find m0 ∈ IN and C > 0 such that

sup
µ∈K

µ({x : qm0(x) > C}) < ε. (2.62)

Proof. We apply the standard strategy. If (2.62) is not satisfied, then there is ε > 0 such
that for every M and for some µM ∈ K

µM ({x : qM (x) > M}) ≥ ε. (2.63)

If {Xk} is the strong a.s. Skorohod representation for some subsequence µMk
, then it is tight

(by Corollary 2.3.2). and so for some m0 and C

P (qm0(Xk) ≤ C) = µMk
({x : qm0(x) ≤ C}) > 1− ε, k = 1, 2, . . . . (2.64)

Hence for k satisfying Mk > C and Mk > m0 we get from (2.63) and (2.64)

1− ε ≥ µMk
({x : qMk

(x) ≤Mk})
≥ µMk

({x : qMk
(x) ≤ C})

≥ µMk
({x : qm0(x) ≤ C}) > 1− ε,

what is a contradiction.
Usually results valid for S ′ hold also for space D′, despite its more complicated structure.

The reason is that D′ can be identified with a closed subset of a countable product of duals to
Fréchet nuclear spaces and that the properties under consideration are preserved when passing
to closed subspaces and countable products. This is exactly the case with our “Prohorov
spaces”. Recall that (X , τ) is “Prohorov space” if every conditionally compact subset K ⊂
P(X ) (with P(X ) equipped with the weak topology) is uniformly τ -tight (see [25]). Since
we know that O( ∗⇒) may be strictly finer than the weak topology, the corresponding notion
for (P(X ),O( ∗⇒)) may be different. Therefore we say that (X , τ) is an S-P space, if every
∗⇒-relatively compact subset of P(X ) is uniformly τ -tight.

The present section contains several standard examples of S-P spaces. We conclude the
paper with formal statement of some properties of S-P spaces.

Theorem 2.4.5 Let (X , τ) be an S-P space satisfying (2.13). If C ⊂ X is either closed or
Gδ, then (C, τ |C) is again S-P space.

Proof. The only nontrivial part is proving that if G is open and K ⊂ P(G) is ∗⇒-relatively
compact (in P(G)!), then K is uniformly τ |G-tight. Since relative compactness in P(G) means
also relative compactness in P(X ), by the S-P property we get uniform τ -tightness of K. By
(2.21) the closure K in P(X ) (which consists of limiting points of K) is uniformly τ -tight and
so sequentially compact, both in P(X ) and P(G) (the latter by relative compactness in P(G)).
Since in our case sequential compactness is equivalent to compactness, it is now possible to
repeat step by step the reasoning given in the proof of Theorem 1, [25], pp. 109-110.
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Corollary 2.4.6 Any S-P space satisfying (2.13) has the property that the closure of a
relatively compact set is compact and consists of the set itself and its limiting points.

Theorem 2.4.7 Let (Xn, τn), n = 1, 2, . . . be S-P spaces satisfying (2.13). Then the product
space

∏∞
n=1(Xn, τn) is an S-P space.

Acknowledgement. The author would like to thank Professor Kisyński for information on the inde-
pendent source [16] for Kisyński’s theorem.



Paper No 3.

A non-Skorohod topology

on the Skorohod space

Abstract

A new topology (called S) is defined of the space ID of functions x : [0, 1] → IR1

which are right-continuous and admit limits from the left at each t > 0. This
topology converts ID into a linear topological space but cannot be metricized. Nev-
ertheless, S is quite natural and shares many useful properties with the traditional
Skorohod’s topology J1. In particular, on the space P(ID) of laws of stochastic
processes with trajectories in ID the topology S induces a sequential topology for
which both the direct and the converse Prohorov’s theorems are valid, the a.s. Sko-
rohod representation for subsequences exists and finite dimensional convergence
outside a countable set holds.

3.1 Introduction

Let ID = ID([0, 1] : IR1) be the space of functions x : [0, 1] → IR1 which are right-continuous
and admit limits from the left at each t > 0. We are going to study a new sequential topology
on ID generated by naturally arising criteria of relative compactness. The novelty is that
this topology cannot be metricized. Nevertheless we shall show how to build a complete and
satisfactory theory of the convergence in distribution with respect to this topology.

Despite metric topologies are sequential, the process of defining topology through de-
scription of the family of convergent sequences is not the common approach, especially in
probability theory. We refer to Paper II for rather extensive discussion of sequential methods
in weak limit theorems of probability theory. Here we shall point out only that

every time one proves a limit theorem via the direct Prohorov’s theorem,
one obtains a result for the sequential topology generated by the original
one.

Since Prohorov’s theorems are accepted tools of probability theory the same should happen
to sequential methods, as they fit the original Prohorov’s and Skorohod’s ideas much better
than the theory based on weak-∗ convergence of distributions.

In order to show our motivations we begin with a simple, well-known example. Let V+ ⊂ ID
consists of nonnegative and nondecreasing functions v : [0, 1] → IR+. Suppose that for some
subset K ⊂ V+ we have:

sup
v∈K

v(1) < +∞. (3.1)

Let Q ⊂ [0,1] be countable dense and let 1 ∈ Q. By (3.1) we may find a sequence {vn}n∈IN ⊂
K such that for each q ∈ Q

vn(q)→ ṽ(q),

21
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where ṽ(q) are numbers satisfying ṽ(q′) ≤ ṽ(q′′), q′ < q′′, q′, q′′ ∈ Q. Hence the function

v0(t) =


inf
q>t
q∈Q

ṽ(q) if t < 1;

ṽ(1) if t = 1,
(3.2)

belongs to V+. Moreover, we have as n→∞

vn(t)→ v0(t), (3.3)

provided t = 1 or t is a point of continuity of v0: v0(t) = v0(t−). Define finite measures on
([0, 1],B[0,1]) by formula

µn([0, t]) = vn(t), t ∈ [0, 1], n = 0, 1, 2, . . . ,

and observe that (3.3) is equivalent to the weak convergence of µn’s, i.e. convergence of µn’s
considered as continuous linear functionals on the space C([0, 1] : IR1) of continuous functions
on [0, 1] equipped with the weak-∗ topology:

µn ⇒ µ0 iff
∫
f(t) dµn(t)→

∫
f(t) dµ0(t), f ∈ C([0, 1] : IR1).

It follows that condition (3.1) when restricted to V+ is a criterion of relative compactness for
some, quite natural topology.

A very similar procedure may be performed for the space ID. Suppose that

sup
x∈K

sup
t∈[0,1]

|x(t)| ≤ CK < +∞, (3.4)

and that for all a < b, a, b ∈ IR

sup
x∈K

Na,b(x) ≤ Ca,bK < +∞, (3.5)

where Na,b is the usual number of up-crossing given levels a < b. (Recall that Na,b(x) ≥ k
if one can find numbers 0 ≤ t1 < t2 < . . . < t2k−1 < t2k ≤ 1 such that x(t2i−1) < a and
x(t2i) > b, i = 1, 2, . . . , k). Let, as previously, Q ⊂ [0,1], Q 3 1, be countable dense. By
(3.4) we can extract a sequence {xn}n∈IN ⊂ K such that, as n→∞

xn(q)→ x̃(q), q ∈ Q. (3.6)

Now the construction of the limiting function x0 is not as easy as in the case of V+ and one
has to use (3.5) in essential way to see that

x0(t) =


lim
q→t+
q∈Q

x̃(q) if t < 1;

x̃(1) if t = 1,
(3.7)

is well-defined and belongs to ID. And whether xn converges to x0 in some topology on ID is
not clear at all.
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Meyer and Zheng [23] considered on ID so-called pseudo-path topology and proved that
(3.4) and (3.5) imply conditional compactness of K in this topology. However, the pseudo-
path topology was shown to be equivalent on ID to the convergence in (Lebesgue) measure.
And so neither (3.4) nor (3.5) form the proper description of the relative compactness in
the pseudo-path topology, for it is easy to find a sequence {xn} of elements of ID which is
convergent in measure to an element x0 ∈ ID and is such that for K = {xn : n = 0, 1, 2, . . .}
both (3.4) and (3.5) are not satisfied.

In the present paper we construct a topology on ID, say S, which possesses the following
properties.

• K ⊂ ID is relatively S-compact iff both (3.4) and (3.5) hold.

• S is sequential and cannot be metricized. (ID, S) is a linear topological space.

• The σ-field BS of Borel subsets for S coincides with the usual σ-field generated by
projections (or evaluations) on ID: BS = σ(πt : t ∈ [0, 1]).

• The set P(ID, S) of S-tight probability measures is exactly the set of distributions of
stochastic processes with trajectories in ID: P(ID, S) = P(ID).

• S is weaker than Skorohod’s J1-topology. Since the latter is Polish, S is Lusin in the
sense of Fernique. Being a linear topological space, (ID, S) is also a completely regular
topological space.

Hence it is possible to use the full power of the existing theory for regular Lusin spaces ([11],
[12]). The point is that in some Lusin spaces the direct Prohorov’s theorem is not the proper
tool for proving limit theorems based on the weak-∗ convergence of probability measures (and,
consequently, there is no the a.s. Skorohod representation). And in such a case the classical
weak topology on P(ID, S) becomes difficult to handle. Therefore we suggest an alternative
approach, based on the topology induced by the a.s. Skorohod representation.

• On P(ID) there exists a unique sequential topology O( ∗=⇒) (where ∗=⇒ denotes the
convergence determining the topology) which is finer than the weak topology and for
which ∗=⇒-relative compactness coincides with uniform S-tightness. In particular, for
O( ∗=⇒) both the direct and the converse Prohorov’s theorems are valid.

• LetXn
∗−→D X0 means that the laws of processesXn converge in our sense: L(Xn) ∗=⇒

L(X0). Suppose Xn
∗−→D X0. Then in each subsequence {Xnk

}k∈IN one can find a
further subsequence {Xnkl

}l∈IN such that:

– {X0} ∪ {Xnkl
: l = 1, 2, . . .} admit the usual a.s. Skorohod representation on

([0, 1],B[0,1]);

– outside some countable set Q0 ⊂ [0,1) all finite dimensional distributions of {Xnkl
}

converge to those of X0.

The last statement improves a corresponding result due to Meyer and Zheng [23], where finite
dimensional convergence outside a set of Lebesgue measure null was shown via results on the
pseudo-path topology.

Results on finite dimensional convergence are of quite different flavour than in the case
of the Skorohod J1-topology: for every t 6= 1 the projection πt : ID → IR1, πt(x) = x(t), is
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nowhere S-continuous and so the standard continuity arguments cannot be applied. There
exists, however, a simple procedure, completely paralleling the one described for ID in (3.4)
– (3.7) and allowing to determine the finite dimensional distributions of the limiting process
(hence identifying the limits). Suppose that {Xn} is a uniformly S-tight sequence. Choose
a dense countable subset Q ⊂ [0,1], Q 3 1, and extract a subsequence {Xnk

} such that for
each finite sequence q1 < q2 < . . . < qm of elements of Q we have

(Xnk
(q1), Xnk

(q2), . . . , Xnk
(qm)) −→

D
ν̃(q1,q2,...,qm), (3.8)

where ν̃(q1,q2,...,qm) is a probability distribution on IRm. Then one can prove that for each
finite sequence t1 < t2 < . . . < tm and each approximating sequence q1,l < q2,l < . . . < qm,l,
qj,l ↘ tj , as l → ∞, (qm,l = 1 if tm = 1), probability distributions ν̃(q1,l,q2,l,...,qm,l) weakly
converge to some limit ν(t1,t2,...,tm). Moreover, there is a stochastic process X0 with trajectories
in ID such that for every finite sequence t1 < t2 < . . . < tm

(X0(t1), X0(t2), . . . , X0(tm)) ∼ ν(t1,t2,...,tm), (3.9)

and Xnk

∗−→D X0. This simple procedure was known to hold in the Skorohod J1-topology
([36]); it is interesting to see that it preserves validity at much lower level.

The paper is organized as follows.
In Section 3.2 we define the topology S and give its basic properties.
In Section 3.3 we apply to the space P(ID,S) the machinery developed in Paper II which

is suitable for spaces with countable continuous separation property (as it is the case). In
particular we prove all the results announced above.

In Section 3.4 we show how the theory can be applied to sets of semimartingales satisfying
so-called Condition UT which implies uniform S-tightness and which is known to be important
in limit theorems for stochastic integrals and stochastic differential equations ([14], [30],[19],
[31], Paper IV).

3.2 The topology S

We shall define the topology S in several steps, following the strategy described in Section
2.2 of Paper II (the reader is referred to that paper for definitions and notation). Here is the
description of subsequent steps.

1. Give equivalent reformulations for the (potential) criteria of compactness (3.4) and
(3.5)—Lemma 3.2.1.

2. Find an L-convergence for which (3.4) and (3.5) are criteria of relative compactness—
Lemma 3.2.7.

3. Define S-topology and construct an L∗-convergence using the Kantorovich-Kisyński
recipe.

4. Show there exists a countable family of S-continuous functions separating points of ID
and conclude the topology S is suitable for needs of probability theory.

5. Investigate in some detail other properties of the topology S (Propositions 3.2.14 and
3.2.15).
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Let us denote by ‖x‖∞ the supremum norm on ID:

‖x‖∞ = sup
t∈[0,1]

|x(t)|,

and by ‖v‖ the total variation of v:

‖v‖(t) = sup {|v(0)|+
m∑
i=1

|v(ti)− v(ti−1)| : 0 = t0 < t1 < . . . < tm = t, m ∈ IN}.

For a < b let the number of up-crossings Na,b be defined as above (see the lines after formula
(3.5)) and for η > 0 let the number Nη of η-oscillations be defined by the relation: Nη(x) ≥ k
iff one can find numbers 0 ≤ t1 ≤ t2 ≤ . . . ≤ t2k−1 ≤ t2k ≤ 1 such that |x(t2i−1)− x(t2i)| > η,
i = 1, 2, . . . , k. Finally, let V = V+ − V+.

Lemma 3.2.1 Let K ⊂ ID and suppose that

sup
x∈K
‖x‖∞ < +∞. (3.10)

Then the statements (i) and (ii) below are equivalent:

(i) For each a < b
sup
x∈K

Na,b(x) < +∞. (3.11)

(ii) For each η > 0
sup
x∈K

Nη(x) < +∞. (3.12)

Moreover, either set of conditions (3.10)+(3.11) and (3.10)+(3.12) is equivalent to

(iii) For each ε > 0 and for each x ∈ K there exists vx,ε ∈ V such that

sup
x∈K
‖x− vx,ε‖∞ ≤ ε, (3.13)

and
sup
x∈K
‖vx,ε‖(1) < +∞. (3.14)

Proof. Let us observe first that (iii) implies (3.10):

‖x‖∞ ≤ ε+ ‖vx,ε(x)‖(1). (3.15)

Then the chain of implications (iii)⇒(ii)⇒ (i) follows by inequalities

Nη(x) ≤ vx,ε
η − 2ε

, η > 2ε > 0, x ∈ ID, (3.16)

and
Na,b(x) ≤ Nb−a(x), b > a, x ∈ ID. (3.17)

Now assume (3.10). First we shall prove (i)⇒(ii). Let C∞ = supx∈K ‖x‖∞ and suppose that
for some η > 0 and every n ∈ IN there is xn ∈ K such that Nη(xn) ≥ n. In particular,
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for some 0 ≤ tn,1 < tn,2 < . . . < tn,2n−1 < tn,2n ≤ 1 we have |xn(tn,2i) − xn(tn,2i−1)| > η,
i = 1, 2, . . . , n. Let a1 < a2 < . . . < aR be an η/2-net for the interval I = [−C∞, C∞], i.e.
for each x ∈ I there is aj such that |x− aj | < η/2. In every interval In,i with ends in points
xn(tn,2i−1) and xn(tn,2i) there are at least two points aj−1 and aj which belong to In,i and
are distinct from the interval’s ends. Let Mj(n) be the number of i’s such that both aj−1 and
aj belong to In,i. It follows that for some j0

sup
n
Mj0(xn) = +∞. (3.18)

But Naj0−1,aj0 (xn) is greater or equal to the integer part of (Mj0(xn)− 1)/2 and so by (3.18)

sup
x∈K

Naj0−1,aj0 (x) ≥ sup
n
Naj0−1,aj0 (xn) = +∞.

It remains to prove (ii)⇒(iii). The construction of vx,ε is, in some sense, standard. For ε > 0
let us define

τ ε0 (x) = 0 (3.19)
τ εk(x) = inf{t > τ εk−1(x) : |x(t)− x(τ εk−1(x))| > ε}, k = 1, 2, . . . . (3.20)

(where by convention inf ∅ = +∞) and let

vε(x)(t) = x(τ εk(x)) if τ εk(x) ≤ t < τ εk+1(x), t ∈ [0, 1], k = 0, 1, 2, . . . . (3.21)

Then by the very definition

‖x− vε(x)‖∞ ≤ ε, (3.22)
‖vε(x)‖(1) ≤ ‖x‖∞(2Nε/2(x) + 1), (3.23)

and the lemma follows.

Corollary 3.2.2 For each t ∈ [0, 1] the mapping ID 3 x 7→ (vε(x))(t) defined by (3.21) is
Ft+-measurable, where {Ft+}t∈[0,1] is the natural right-continuous filtration on the canonical
space ID: Ft+ = ∩u>tσ(πs : 0 ≤ s ≤ u). Hence vε(X) is an adapted stochastic process
provided X is adapted to a right-continuous filtration.

Before introducing a convergence in ID which generates the S-topology, let us recall some
facts on the weak-∗ topology on V. Any element v ∈ V determines a signed measure ν on
([0, 1],B) given by the formula

ν([0, t]) = v(t), t ∈ [0, 1].

Since the set of signed measures can be identified with the dual of the Banach space C([0, 1] :
IR1), V can be equipped with the weak-∗ topology. Convergence of elements of V in this
topology will be denoted by −→w . In particular, vn −→w v0 means that for every continuous
function f : [0, 1]→ IR1 ∫

[0,1]
f(t)dvn(t) −→

w

∫
[0,1]

f(t)dv0(t). (3.24)
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Definition 3.2.3 We shall write xn −→S x0 if for every ε > 0 one can find elements vn,ε,
n = 0, 1, 2, . . . which are ε-uniformly close to xn’s and weakly-∗ convergent:

‖xn − vn,ε‖∞ ≤ ε, n = 0, 1, 2, . . . , (3.25)
vn,ε −→

w
v0,ε, as n→ +∞. (3.26)

Remark 3.2.4 (3.26) implies that

vn,ε(t)→ v0,ε(t), (3.27)

for each t outside a countable set Dε ⊂ [0, 1). Taking ε = 1, 1/2, 1/3, . . . we obtain

xn(t)→ x0(t), (3.28)

for each t ∈ [0, 1]\
⋃∞
m=1D1/m. Hence the limit for −→S is determined uniquely. Further, step

functions are dense in ID for the uniform topology and so for the constant sequence xn ≡ x0,
n = 1, 2, . . ., we have xn −→S x0. Since also a subsequence of a sequence convergent in the
sense of −→S is (obviously) −→S -convergent, we conclude that −→S is an L-convergence.
It follows we have enough information to define a topology.

Definition 3.2.5 A set F ⊂ ID is closed in S-topology, if it contains all limits of its −→S -
convergent subsequences, i.e. if xn ∈ F , n = 1, 2, . . ., and xn −→S x0 then x0 ∈ F . The
convergence of sequences in S-topology will be denoted by ∗−→S .

Remark 3.2.6 Similarly as in many other cases, ∗−→S , being an L∗-convergence, may be
weaker than the original L-convergence −→S . This is not a real problem in view of the
Kantorovich-Kisyński recipe [16],[17]:

xn
∗−→S x0 if, and only if, in every subsequence {nk} one can find a further

subsequence {nkl
} such that xnkl

−→S x0.
(3.29)

In particular, relative ∗−→S -compactness of K ⊂ ID and relative −→S -compactness of K
coincide, as well as sequential ∗−→S -continuity (≡ S-continuity) of g : ID → IR1 means the
same as sequential −→S -continuity of g.

The reason for our interest in the S-topology is that (3.4) and (3.5) provide criteria of
relative compactness for topology S.

Lemma 3.2.7 If (3.4) and (3.5) hold for K ⊂ ID then there exists a sequence {xn} ⊂ K
and x0 ∈ ID such that xn −→S x0.

Conversely, if in every sequence {xn} one can find a subsequence {xnk
} and x0 ∈ ID such

that xnk
−→S x0, then K satisfies both conditions (3.4) and (3.5).

Proof. Suppose (3.4) and (3.5) are satisfied for K ⊂ ID. Fix for the time being ε > 0 and
consider the map vε(x) defined by (3.21). By Lemma 3.2.1

sup{‖vε(x)‖(1) : x ∈ K} < +∞, (3.30)

hence the set {vε(x) : x ∈ K} is a relatively −→w -compact subset of V and we can extract
a sequence {xε,n} ⊂ K such that vε(xε,n) −→w vε, for some vε ∈ V.



28 PAPER NO 3. NON-SKOROHOD TOPOLOGY

Now let us set ε = 1, 1/2, 1/3, . . . and apply the diagonal procedure in order to find a
sequence {xn} ⊂ K such that for every m ∈ IN

v1/m(xn) −→
w

v1/m. (3.31)

Let Q ⊂ [0,1] consists of those t for which

v1/m(xn)(t)→ v1/m(t), as n→ +∞,m = 1, 2, . . . . (3.32)

We have 1 ∈ Q and [0, 1] \ Q is at most countable, hence Q is dense. In particular, for any
x ∈ ID,

‖x‖∞ = sup
t∈Q
|x(t)|. (3.33)

By (3.32)

|v1/m(t)− v1/k(t)|
= lim

n→∞
|v1/m(xn)(t)− v1/k(xn)(t)|

≤ lim sup
n→∞

|v1/m(xn)(t)− xn(t)|+ |xn(t)− v1/k(xn)(t)|

≤ 1
m

+
1
k
,

and by (3.33)

‖v1/m − v1/k‖∞ ≤
1
m

+
1
k
.

It follows that v1/m uniformly converges to some x0 ∈ ID and ‖x0 − v1/m‖ ≤ 1/m. Hence
xn −→S x0.

The converse part follows immediately from Lemma 3.2.8 below.

Lemma 3.2.8 Suppose xn
∗−→S x0. Then

sup
n∈IN
‖xn‖∞ ≤ C∞ < +∞, (3.34)

sup
n∈IN

Na,b(xn) ≤ Ca,b < +∞, a < b, a, b ∈ IR1, (3.35)

sup
n∈IN

Nη(xn) ≤ Cη < +∞, η > 0, (3.36)

sup
n∈IN
‖vε(xn)‖(1) ≤ Cε < +∞, ε > 0. (3.37)

Proof. By (3.29) we may assume xn −→S x0. Because of inequalities (3.15), (3.16) and
(3.17), it is enough to prove (3.37) only. But by the special way of construction of vε(x), for
any y ∈ ID satisfying ‖y − x‖∞ ≤ ε/3, one has

‖y‖(1) ≥ 1
3
‖vε(x)‖(1). (3.38)

If vn,ε/3 is such that ‖xn − vn,ε/3‖∞ ≤ ε/3, n = 0, 1, 2, . . ., and vn,ε/3 −→w v0,ε/3, then

+∞ > 3 sup
n
‖vn,ε/3‖(1) ≥ sup

n
‖vε(xn)‖(1).

In Remark 3.2.4 we showed that xn −→S x0 implies pointwise convergence outside a
countable set D ⊂ [0, 1). By (3.29) we have



3.2. THE TOPOLOGY S 29

Corollary 3.2.9 If xn
∗−→S x0, then in each subsequence {xnk

} one can find a further
subsequence {xnkl

} and a countable set D ⊂ [0, 1) such that

xnkl
(t)−→x0(t), t ∈ [0, 1] \D. (3.39)

Given Corollary 3.2.9 we have lower semicontinuity of many useful functionals on ID.

Corollary 3.2.10 If xn
∗−→S x0 then:

lim inf
n∈IN

‖xn‖∞ ≥ ‖x0‖∞, (3.40)

lim inf
n∈IN

Na,b(xn) ≥ Na,b(x0), a < b, a, b ∈ IR1, (3.41)

lim inf
n∈IN

Nη(xn) ≥ Nη(x0), η > 0, (3.42)

lim inf
n∈IN

‖vε(xn)‖(1) ≥ ‖vε(x0)‖(1), ε > 0. (3.43)

In view of (3.34) and (3.39) we have continuity for integral functionals.

Corollary 3.2.11 Let Φ : [0, 1]× IR1 → IR1 be measurable and such that for each t ∈ [0, 1]
Φ(t, ·) is continuous and for each C > 0

sup
t∈[0,1]

sup
|x|≤C

|Φ(t, x)| < +∞. (3.44)

Let µ be an atomless finite measure on [0, 1]. Then the mapping

ID 3 x 7→
∫

[0,1]
Φ(t, x(t)) dµ(t) ∈ IR1, (3.45)

is S-continuous.

An important particular case is the Lebesgue measure on [0, 1] and

Φ(t, x) =
1
δ

1I[u,u+δ](t) · x,

which gives the S-continuity of mappings

ID 3 x 7→ xδu =
1
δ

∫
[u,u+δ]

x(t)dt. (3.46)

Since for u < 1
lim
δ↘0

xδu = x(u) = πu(x)

and π1 is S-continuous, we conclude that Borel subsets of (ID, S) coincide with σ(πu : u ∈
[0, 1]). In addition, running u and δ over rational numbers in [0, 1] we get a countable family
of S-continuous functions which separate points in ID. In particular, any S-compact subset
of ID is metrisable. Another useful statement implied by continuity of (3.46) is that (ID, S)
is a Hausdorff space.
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It should be, however, emphasized that contrary to Skorohod’s topologies, the evaluations
πu are for u < 1 nowhere S-continuous. To see this, take x = x0 ∈ ID and 0 ≤ u < 1 and
define

xn(t) = x0(t) + 1I[u,u+(1/n))(t).

Clearly, xn −→S x0, but xn(u) = x0(u) + 1 6→ x0(u).
The fact that (ID, S) is a linear topological space in a trivial way follows from the very

definition of convergence −→S . Since any linear topological space (with the T1-property)
is completely regular, so does (ID, S). But S is not metrisable. In order to prove the latter
statement, let us consider an example.

Example 3.2.12 Let for m,n ∈ IN xm,n(t) = m1I[1/2,1/2+1/n)(t), t ∈ [0, 1]. Then for each
fixed m ∈ IN we have xm,n −→S 0, as n→ +∞. Let nm →∞, as m→∞. The sequence
{xm,nm}m∈IN does not contain any ∗−→S -convergent subsequence, for lim infm→∞ ‖xm,nm‖∞ =
+∞. And for any convergence generated by a metric there should exist a sequence {nm} such
that xm,nm

∗−→S 0.

We summarize all obtained results in

Theorem 3.2.13 The Skorohod space ID equipped with the sequential topology S is a linear
Hausdorff topological space which cannot be metricized. Moreover:

(i) There exists a countable family of S-continuous functions which separate points in ID.

(ii) Compact subsets K ⊂ ID are metrisable.

(iii) A subset K ⊂ ID is relatively S-compact if either of equivalent sets of conditions
(3.10)+(3.11), (3.10)+(3.12) and (3.13)+(3.14) is satisfied.

(iv) S-Borel subsets BS coincide with the standard σ-algebra generated by evaluations (pro-
jections).

We conclude this section with two additional properties of the S-topology.
We have observed that the evaluations at t < 1 are nowhere continuous. It is therefore

interesting that the evaluations still can be used for identification of the limit.

Proposition 3.2.14 Let Q ⊂ [0,1], 1 ∈ Q, be dense. Suppose {xn} is relatively S-compact
and

xn(q)→ x0(q), as n→ +∞, q ∈ Q. (3.47)

Then xn
∗−→S x0.

Proof. Suppose along a subsequence {nk} we have xnk
−→S y0. Then for q′ in some dense

subset Q′ ⊂ [0,1), xn(q′) → y0(q′). If y0 6= x0, then for some η > 0 and (u, v) ⊂ [0, 1) one
has |y0(t)− x0(t)| > η for t ∈ (u, v). Let u < t1 < t2 < . . . < v be such that:

1. t1, t3, . . . , t2m−1, . . . ∈ Q,

2. t2, t4, . . . , t2m, . . . ∈ Q′.
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Then for each m ∈ IN Nη/2(xnk
) ≥ 2m for k large enough, hence Nη/2(xnk

)→ +∞ and {xnk
}

cannot be S-convergent. Hence y0 = x0.
Clearly, not all topologies on ID possess the property investigated in Proposition 3.2.14.

For example, it is easy to find a sequence {xn} ⊂ ID which converges in measure to x0 ≡ 0
and is such that xn(q)→ 1 for each rational q ∈ [0, 1]. Hence Proposition 3.2.14 is not valid
for the “pseudo-path” topology.

Another interesting feature of the S-topology is the continuity of the smoothing operation
ID 3 x 7→ sµ(x) ∈ C([0, 1] : IR1), where

sµ(x)(t) =
∫ t

0
x(s) dµ(s), (3.48)

and µ is an atomless finite measure on [0, 1] (e.g. given by a density pµ(s)).

Proposition 3.2.15 The operation sµ : (ID, S)→ (C, ‖ · ‖∞) is continuous.

Proof. Suppose xn −→S x0. Corollary 3.2.11 shows that for every t ∈ [0, 1] sµ(xn)(t) →
sµ(x0)(t). Hence only relative compactness of {sµ(xn)} ⊂ C([0, 1] : IR1) has to be verified.
But this is straightforward:

sup
n

sup
t<u<t+δ

|sµ(xn)(u)− sµ(xn)(t)| ≤ sup
n
‖xn‖∞ × sup

t∈[0,1]
µ([t, t+ δ])→ 0,

when δ → 0.

3.3 Convergence in distribution on (ID, S)

In the previous section we checked the equality BS = σ{πt : t ∈ [0, 1]}. It follows that every
probability measure on (ID,BS) is tight. Let us denote the set of such measures by P(ID).
Further, the notions “random element in (ID,BS)” and “stochastic process with trajectories
in ID” are synonymous and we see that the theory developed in Section 3.2 applies to usual
objects.

It is a nice feature of Lemma 3.2.7 that we have

Proposition 3.3.1 A family of stochastic processes {Xα} with trajectories in ID is uni-
formly S-tight if, and only if, the family of random variables {‖Xα‖∞} is uniformly tight and
for each pair a < b, a, b ∈ IR1, the family of random variables {Na,b(Xα)} is uniformly tight.

Since S-compact subsets of ID are metrisable, uniform S-tightness of K ⊂ P(ID) im-
plies relative compactness of K with respect to the weak-∗ topology on P(ID) (the direct
Prohorov’s theorem). The converse, however, is not clear at all. And we are not going to
investigate this question. Instead we shall equip P(ID) with a sequential topology induced
by S, which is finer than the weak-∗ topology, for which both the direct and the converse
Prohorov’s theorem hold and which is very close to the a.s. Skorohod representation. The
advantage of such an approach is evident: we have effective tools (Prohorov’s theorems, the
a.s. Skorohod representation), more (in general) continuous functionals and if the converse
Prohorov’s theorem is valid for the weak-∗ topology, then the convergence of sequences in
both topologies coincides (see Paper II).

The advertized “new” convergence in distribution will be denoted by ∗−→D and
Xn

∗−→D X0 will mean the following:
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Definition 3.3.2 In every subsequence {Xnk
} one can find a further subsequence {Xnkl

}
and stochastic processes {Yl} defined on ([0, 1],B[0,1], `) such that

Yl ∼ Xnkl
, l = 1, 2, . . . , (3.49)

for each ω ∈ [0, 1]
Yl(ω) ∗−→

S
Y0(ω), as l→∞, (3.50)

and for each ε > there exists an S-compact subset Kε ⊂ ID such that

P ({ω ∈ [0, 1] : Yl(ω) ∈ Kε, l = 1, 2, . . .}) > 1− ε. (3.51)

One can say that (3.50) and (3.51) describe “the almost sure convergence in compacts” and
that (3.49), (3.50) and (3.51) define the strong a.s. Skorohod representation for subsequences
(“strong” because of condition (3.51)).

We shall write µn
∗=⇒ µ0 whenever µn = L(Xn) and Xn

∗−→D X0.
It follows from Lemma 3.2.7 and Corollary 3.2.10 that on (ID, S) there exists a countable

family of lower continuous functionals {ξi}i∈II such that K ⊂ ID is conditionally compact iff
each ξi is bounded on K, i ∈ II. Therefore we can apply Theorem 2.4.2 of Paper II to obtain
the direct and converse Prohorov’s theorems for OS( ∗=⇒).

Theorem 3.3.3 Let {Xα} be a family of stochastic processes with trajectories in ID. The
following statements are equivalent.

(i) {Xα} is relatively compact with respect to “ ∗−→D ” on (ID, S).

(ii) {Xα} is uniformly S-tight.

(iii) {‖Xα‖∞} is a uniformly tight family as well as for each a < b {Na,b(Xα)} is uniformly
tight.

(iv) {‖Xα‖∞} is uniformly tight and for each η > 0 {Nη(Xα)} is uniformly tight.

(v) For each ε > 0 the family {‖vε(Xα)‖(1)} is uniformly tight (where vε is defined by
(3.21)).

We have shown the topology OS( ∗=⇒) induced by S is as good as the weak-∗-star topology
on P(ID, J1), at least from the point of view of proving limit theorems. Theorem 3.3.3 does not
end the list of (formal) similarities between the mentioned topologies. We shall point three
other properties of the topology OS( ∗=⇒) which belong to standard tools of limit theory.
It will be proved first that convergence of finite dimensional distributions can be used for
identification of limits in ∗=⇒-convergence (although the projections are nowhere continuous).

Theorem 3.3.4 Let Q ⊂ [0,1] be dense, 1 ∈ Q. Suppose that for each finite subset Q0 =
{q1 < q2 < . . . < qm} ⊂ Q we have as n→∞

(Xn(q1), Xn(q2), . . . , Xn(qm)) −→
D

(X0(q1), X0(q2), . . . , X0(qm)), (3.52)

where X0 is a stochastic process with trajectories in ID.
If {Xn} is relatively compact with respect to ∗−→D , then Xn

∗−→D X0.
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Proof. Let ψ0(x) = ‖x‖∞ and let ψi(x) = N1/i(x), i = 1, 2, . . .. Define also Ψ(x) =
(ψi(x))i=0,1,2,... ∈ IR∞ and Φ(x) = (x(q))q∈Q ∈ IRQ.

By Theorem 3.3.3 {Ψ(Xn)} is uniformly tight in IR∞. Hence at least along some subse-
quence we have in IR∞ × IRQ

(Φ(Xn),Ψ(Xn)) −→
D

(Φ(X0), Z). (3.53)

By Skorohod’s theorem on the a.s. representation there exist random elements (Un, Vn),
n = 0, 1, 2, . . ., defined on ([0, 1],B[0,1], `) and such that

(Un, Vn) ∼ (Φ(Xn),Ψ(Xn)), n = 1, 2, . . . , (3.54)
(U0, V0) ∼ (Φ(X0), Z), (3.55)

and for each ω ∈ [0, 1]

Un(ω)→ U0(ω) in IR∞, Vn(ω)→ V0(ω) in IRQ. (3.56)

We claim that

there exists a measurable mapping Θ : IR∞ → ID such that Θ(Un) ∼ Xn,
n = 0, 1, 2, . . ., and Vn = Ψ ◦Θ(Un), `-a.s., n = 1, 2, . . ..

(3.57)

Φ is a measurable and one-to-one mapping from ID into IR∞. We know S-compact subsets
of ID are metrisable, hence Φ maps each S-compact subset K onto a Borel subset Φ(K) of
IR∞. The same holds also for any σ-compact subset of ID. Since laws of all X0, X1, X2, . . . are
S-tight, we can find a common σ-compact support K0, i.e. P (Xn ∈ K0) = 1, n = 0, 1, 2, . . ..
If we set Θ(y) = Φ−1(y) for y ∈ Φ(K0) and Θ(y) = 0 outside Φ(K0), then Xn = Θ(Φ(Xn))
almost surely on the probability space where Xn is defined and Un = Φ(Θ(Un)) `-a.s. We
have also Ψ(Xn) = Ψ(Θ(Φ(Xn))) almost surely and so Vn = Ψ(Θ(Un)) `-a.s. by (3.54).

Choose ω ∈ [0, 1] in a “good” subset of full measure and consider {xn = Θ(Un(ω))}n∈IN ⊂
ID. We have xn(q) → x0(q), q ∈ Q, and for each i = 0, 1, 2, . . . ψi(xn) → (V0(ω))i, hence
supn ψi(xn) < +∞. By Proposition 3.2.14 xn

∗−→S x0. Hence Θ(Un) is the a.s. Skorohod
representation for Xn (in fact, for a subsequence of Xn) and so Xn

∗−→D X0.
Only a slightly modified proof give us

Theorem 3.3.5 Let Q ⊂ [0,1] be dense, 1 ∈ Q. Suppose {Xn} is a uniformly S-tight
sequence and that for each finite sequence q1 < q2 < . . . < qm of elements of Q we have

(Xn(q1), Xn(q2), . . . , Xn(qm)) −→
D

ν̃(q1,q2,...,qm), (3.58)

where ν̃(q1,q2,...,qm) is a probability distribution on IRm. Then for each finite sequence t1 <
t2 < . . . < tm and each approximating sequence q1,l < q2,l < . . . < qm,l, qj,l ↘ tj, as l → ∞,
(qm,l = 1 if tm = 1), probability distributions ν̃(q1,l,q2,l,...,qm,l) weakly converge to some limit
ν(t1,t2,...,tm). Moreover, there is a stochastic process X0 with trajectories in ID such that for
every finite sequence t1 < t2 < . . . < tm

(X0(t1), X0(t2), . . . , X0(tm)) ∼ ν(t1,t2,...,tm), (3.59)

and Xnk

∗−→D X0.
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Remark 3.3.6 The Skorohod J1-topology also possesses the properties described in Theo-
rems 3.3.4 and 3.3.5 (see [36]).

An especially convenient tool for investigations of the topology OS( ∗=⇒) is provided by
the following decomposition.

Theorem 3.3.7 A family {Xα} of stochastic processes with trajectories in ID is uniformly
S-tight if, and only if, for each ε > 0 we can decompose processes Xα in the following way:

Xα(t) = Rα,ε(t) + Uα,ε(t)− Vα,ε(t), t ∈ [0, 1], (3.60)

where all processes Rα,ε, Uα,ε and Vα,ε are adapted to the natural right-continuous filtration
generated by Xα, trajectories of Rα,ε are uniformly small:

‖Rα,ε‖∞ ≤ ε, (3.61)

Uα,ε and Vα,ε are nonnegative and nondecreasing (i.e. have paths in V+) and both {Uα,ε(1)}
and {Vα,ε(1)} are uniformly tight families of random variables.

Proof. By Theorem 3.3.5, the family {Xα} is uniformly S-tight iff for each ε > 0 the
family of random variables {‖vε(Xα)‖(1)} is uniformly tight, where processes vε(Xα)(t) are
defined by (3.21) and are adapted by Corollary 3.2.2. Hence it is enough to set Rα(t) =
Xα(t) − vε(Xα)(t) and decompose vε(Xα)(t) into a difference of two increasing processes
Uα,ε(t) and Vα,ε(t) in such a way that

‖vε(Xα)‖(1) = Uα,ε(1) + Vα,ε(1).

Remark 3.3.8 It follows from (3.60) that any fact on increasing processes may contribute
to the knowledge of S-topology. The very close relation between the weak topology on V+ and
the S-topology on ID becomes clear, if we realize that the topology S induces on V+ exactly
the topology of weak convergence (notice, however, that on V = V+ − V+ the topology S is
weaker!). So we can consider the S-topology on ID as a natural extension of the notion of
weak convergence of elements of V+.

Theorem 3.3.9 Let {Vα} be a family of stochastic processes with trajectories in V+. Sup-
pose that {Vα(1)} is uniformly tight. Then there exists a sequence {Vn} ⊂ {Vα}, an increasing
process V0 and a countable subset D ⊂ [0, 1) such that for all finite sets Q0 = {q1 < q1 <
. . . < qm} ⊂ [0,1] \ D

(Vn(q1), Vn(q2), . . . , Vn(qm)) −→
D

(V0(q1), V0(q2), . . . , V0(qm)). (3.62)

Proof. Let µα be a random measure on ([0, 1],B[0,1]) given by formula

µα([0, t], ω) =
Vα(t, ω)

1 + Vα(1, ω)
, t ∈ [0, 1]. (3.63)

Since µα takes values in the space M≤1 = M≤1([0, 1]) of measures on compact space [0, 1]
with total mass smaller than 1, we can extract a sequence µn such that on the spaceM≤1×IR+

(µn, Vn(1)) −→
D

(µ0, Z0). (3.64)
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Since M≤1 × IR+ is a Polish space we may assume without loss of generality that almost
surely

µn(·, ω) =⇒µ0(·, ω), Vn(1, ω)→ Z0(ω). (3.65)

Let us consider the mapping [0, 1] 3 t 7→ Eµ0([0, t], ω) = (Eµ0)([0, t]). Outside a countable
set D ⊂ [0, 1) we have (Eµ0)({t}) = 0, hence µ0({t}, ω) = 0 for almost all ω, and so by (3.65)
and for t 6∈ D

µn([0, t], ω)→ µ0([0, t], ω), (3.66)

or
Vn(t, ω)→ (1 + Z0(ω))µ0([0, t], ω) =: V0(t, ω). (3.67)

The theorem has been proved.
Now we are ready to prove a corresponding result for (ID, S) which (in some sense) im-

proves Theorem 5 of [23], where finite dimensional convergence outside a set of Lebesgue
measure 0 was obtained (but only convergence in distribution with respect to the “pseudo-
path topology” was assumed).

Theorem 3.3.10 Let {Xα} be a uniformly S-tight family of stochastic processes with tra-
jectories in ID. Then there exists a sequence {Xn} ⊂ {Xα}, a process X0 with trajectories
in ID and a countable subset D ⊂ [0, 1) such that for all finite sets Q0 = {q1 < q1 < . . . <
qm} ⊂ [0,1] \ D

(Xn(q1), Xn(q2), . . . , Xn(qm)) −→
D

(X0(q1), X0(q2), . . . , X0(qm)). (3.68)

In particular, Xn
∗−→D X0.

Proof. According to (3.60), for each m ∈ IN we can decompose

Xα = Rα,1/m + Uα,1/m − Vα,1/m

with Uα,1/m and Vα,1/m uniformly tight on (V+,S). By tightness assumptions one can find a
subsequence such that on the space (ID, S)× (V+, S)IN

(Xn, Un,1, Vn,1, . . . , Un,1/m, Vn,1/m, . . .)
∗−→
D

(X0, U1, V1, . . . , Um, Vm, . . .).

It means that passing again to a subsequence we have the a.s. Skorohod representation, i.e.
without loss of generality we may assume that

Xn(ω) ∗−→
S

X0(ω) in ID,

Un,1/m(ω) ∗−→
S

Um(ω) in V+, m ∈ IN,

Vn,1/m(ω) ∗−→
S

Vm(ω) in V+, m ∈ IN.

Since Xn(ω) ∗−→S X0(ω) and because of (3.60) we have

‖Um(ω)− Vm(ω)−X0(ω)‖∞ ≤ 2/m
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and so for every finite subset {t1 < t2 < . . . < tr} ⊂ [0, 1] we have as m→∞

(Um(t1)− Vm(t1), Um(t2)− Vm(t2), . . . , Um(tr)− Vm(tr))
−→D (X0(t1), X0(t2), . . . , X0(tr)).

On the other hand, applying Theorem 3.3.9 we see that as n→∞

(Un,1/m(q1), Vn,1/m(q1), Un,1/m(q2), Vn,1/m(q2), . . . , Un,1/m(qr), Vn,1/m(qr))
−→D (Um(q1), Vm(q1), Um(q2), Vm(q2), . . . , Um(qr), Vm(qr))

for every finite subset Q0 = {q1 < q2 < . . . < qr} ⊂ [0,1] outside a countable subset
Dm ⊂ [0, 1). Hence outside D = D1 ∪D2 ∪ . . . we have (3.68).

3.4 Uniform S-tightness and semimartingales

Theorem 3.3.3 provides several sets of conditions equivalent to uniform S-tightness. Inequali-
ties (3.16) and (3.17) suggest the easiest way of proving uniform S-tightness: one has to check
whether families {‖Xα‖∞} and {Na,b(Xα)}, for each a < b, are bounded in probability. For
example, if X is a supermartingale, then one can use the classical Doob’s inequalities (see [6],
Ch. VI):

P ( sup
t∈[0,1]

|X(t)| ≥ λ) ≤ 3λ−1 sup
t∈[0,1]

E|X(t)|, (3.69)

ENa,b(X) ≤ 1
b− a

(|a|+ sup
t∈[0,1]

E|X(t)|). (3.70)

It follows immediately that any sequence {Xn} of supermartingales satisfying

sup
t∈[0,1]

E|Xn(t)| < +∞, (3.71)

is uniformly S-tight. The most general result of such kind concerns semimartingales and
belongs to Stricker [33]. We shall restate it using terminology of the paper [14] and the
setting of S-topology.

Let {Xα} be a family of stochastic processes with trajectories in ID, with Xα defined on the
stochastic basis (Ωα,Fα, {Fαt }t∈[0,1], P

α) and adapted to filtration {Fαt }t∈[0,1]. We say that
Condition UT holds for {Xα}, if the family of elementary stochastic integrals {

∫
Hα
− dXα(1)}

with integrands bounded by 1 is uniformly tight. (By an elementary stochastic integral with
integrands bounded by 1 we mean random variable of the form

m∑
i=1

Hα(ti−1) (Xα(ti)−Xα(ti−1)) ,

where m ∈ IN , 0 = t0 < t1 < . . . < tm = T , Hα(ti) ≤ 1 and Hα(ti) is Fα(ti)-measurable
for i = 0, 1, . . . ,m. Condition UT was considered for the first time in [33]. The reader may
find conditions which follow the line of (3.71) and are sufficient for Condition UT in [14].
For equivalent reformulations in terms of predictable characteristics we refer to [21]. Here we
stress the fact that the family consisting of a single process X satisfies Condition UT if, and
only if, X is a semimartingale (see e.g. [27]). Therefore in what follows we shall deal with
semimartingales only.

The essential step in the proof of Theorem 2 of [33] gives us



3.4. UNIFORM S-TIGHTNESS AND SEMIMARTINGALES 37

Theorem 3.4.1 Condition UT implies uniform S-tightness.

By Theorem 3.3.10 any set {Xα} of semimartingales satisfying Condition UT contains a
sequence Xn

∗−→D X0 for which finite dimensional convergence holds outside a countable
set D ⊂ [0, 1): for every finite subset {0 ≤ q1 < q2 < . . . < qm ≤ 1} ⊂ Q = [0,1] \ D

(Xn(q1), Xn(q2), . . . , Xn(qm)) −→
D

(X0(q1), X0(q2), . . . , X0(qm)) (3.72)

on the space IRm. If (3.72) is satisfied for every finite subset {0 ≤ q1 < q2 < . . . < qm ≤ 1} of
some set Q, we shall write Xn−→Df (Q)X0.

Since Q = [0,1]\D is dense in [0, 1] we can apply Lemma 1.3 of [14] and conclude that X0

is a semimartingale. Let us observe that the pseudo-path topology gives the finite dimensional
convergence over a set of full Lebesgue measure only and so our methods give an improvement
of Theorem 2 in [33].

Theorem 3.4.2 Suppose Condition UT holds for a family of semimartingales {Xα}. Then
there exists a sequence {Xn} ⊂ {Xα} and a semimartingale X0 such that Xn

∗−→D X0 and
Xn−→Df (Q)X0, where 1 ∈ Q and the complement of Q in [0, 1] is at most countable.

The two subsequent results are based on Theorems 3.3.4 and 3.3.5 and are not valid for
the pseudo-path topology.

Theorem 3.4.3 Suppose Q ⊂ [0,1] is dense, 1 ∈ Q and Xn−→Df (Q)X0, where X0 has
trajectories in ID.

If Condition UT is satisfied for {Xn}, then X0 is a semimartingale and Xn
∗−→D X0.

Theorem 3.4.4 Let Q be as in Theorem 3.4.3. Suppose for each finite sequence q1 < q2 <
. . . < qm of elements of Q we have

(Xn(q1), Xn(q2), . . . , Xn(qm)) −→
D

ν̃(q1,q2,...,qm), (3.73)

where ν̃(q1,q2,...,qm) is a probability distribution on IRm.
If Condition UT holds for {Xn}, then there exists a semimartingale X0 such that Xn

∗−→D
X0. Moreover, for each finite sequence t1 < t2 < . . . < tm and each approximating sequence
q1,l < q2,l < . . . < qm,l, qj,l ↘ tj, as l → ∞, (qm,l = 1 if tm = 1), probability distributions
ν̃(q1,l,q2,l,...,qm,l) weakly converge to the joint distribution of (X0(q1), X0(q2), . . . , X0(qm)).

Eventually, let us notice that the topology S arises in a quite natural manner in limit
theorems for the Ito stochastic integrals (see Paper IV).
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Paper No 4.

Convergence in various topologies

for stochastic integrals

driven by semimartingales

Abstract

We generalize existing limit theory for stochastic integrals driven by semimartin-
gales and with left-continuous integrands. Joint Skorohod convergence is replaced
with joint finite dimensional convergence plus assumption excluding the case when
oscillations of the integrand appear immediately before oscillations of the integra-
tor. Integrands may converge in a very weak topology. It is also proved that
convergence of integrators implies convergence of stochastic integrals with respect
to the same topology.

4.1 Introduction

Let us begin with a simple example demonstrating one of central difficulties in limit theory
for integrals with discontinuous integrators.

Example 4.1.0 Let k0(t) = 1I[1/2,1](t), kn(t) = 1I[1/2−1/n,1](t), n = 1, 2, . . . and let xn(t) =
1I[1/2,1](t), n = 0, 1, 2, . . .. Then kn → k0 and xn → x0 in the Skorohod space ID = ID ([0, 1] :
IR1), but ∫

kn− dx
n ≡ x0 6→

∫
k0
− dx

0 ≡ 0.

(Here—and in the sequel—we consider integrals over the interval excluding 0, i.e.

(
∫
k− dx)(t) =

∫
]0,t]

k(s−) dx(s),

with k(0−) = 0).

One can eliminate such pathological situation by assuming joint convergence of (kn, xn),
i.e. convergence in ID ([0, 1] : IR2). A very general result in this direction was proved in [14,
Theorem 2.6].

Theorem 4.1.1 For each n ∈ IN , let Xn be a semimartingale with respect to the stochastic
basis (Ωn,Fn, {Fnt }t∈[0,1], P

n) and let Kn be adapted to {Fnt }t∈[0,1] and with trajectories in
ID. Assume that

(Kn, Xn) −→
D

(K0, X0) (4.1)

39
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on the space ID ([0, 1] : IR2). Then X0 is a semimartingale with respect to the natural filtration
generated by (K0, X0) and∫

Kn
− dX

n −→
D

∫
K0
− dX

0 on ID ([0, 1] : IR1), (4.2)

as well as

(Kn, Xn,

∫
Kn
− dX

n) −→
D

(K0, X0,

∫
K0
− dX

0) on ID ([0, 1] : IR3), (4.3)

provided so called Condition UT holds, i.e. the family of elementary stochastic integrals
{
∫
Hn
− dX

n(1)} with integrands bounded by 1 is uniformly tight.

To be explicit, Condition UT means that the family of all random variables of the form

m∑
i=1

Hn
ti−1

(
Xn
ti −X

n
ti−1

)
is uniformly tight, where m ∈ IN , 0 = t0 < t1 < . . . < tm = T , Hn

ti ≤ 1 and Hn
ti is Fnti-

measurable for i = 0, 1, . . . ,m. Condition UT was considered for the first time in [33]. The
reader may find sufficient conditions for Condition UT in [14] and equivalent reformulations in
[21]. Here we shall mention only that Condition UT plays also a crucial role in approximation
of solutions of stochastic differential equations. For the corresponding results in this area as
well as for interesting examples we refer to [30], [31] and [19].

Theorem 4.1.1 suffices for most applications related to stability problems of stochastic
differential equations. On the other hand, within limit theory for stochastic integrals there
exist phenomena which are not covered by this theorem.

Example 4.1.2 Normalized sums of moving averages with summable positive coefficients
of i.i.d. random variables with laws belonging to domain of attraction of an α-stable law
(α < 2) in general do not converge in functional manner when ID is equipped with the usual
Skorohod’s J1 topology. But they do converge to an α-stable Lévy’s motion if we consider
another, weaker topology on ID, known as M1 (see [1], also [29] for definitions of Skorohod’s
topologies).

There exists a satisfactory theory of stochastic integration with respect to α-stable pro-
cesses (see e.g. [15]). It follows that for some naturally arising integrators the requirement of
convergence in the usual Skorohod topology may be too strong.

Example 4.1.3 Let, as in Example 4.1.0, xn(t) = 1I[1/2,1](t), n = 0, 1, 2, . . . and k0(t) =
1I[1/2,1](t). The difference will be in the choice of kn:

kn(t) = 1I[1/2+1/n,1](t), n = 1, 2, . . . .

As before we have kn → k0 and xn → x0 in ID with the standard topology and (kn, xn) 6→
(k0, x0) in ID ([0, 1] : IR2). But this time∫

kn− dx
n ≡ 0→

∫
k0
− dx

0 ≡ 0.
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Example 4.1.4 The preceding example may seem to be artificial and related to the ex-
tremely simple structure of involved processes. To convince the reader the example illustrates
a general rule, let us consider a much less obvious fact.

Let X be a semimartingale on (Ω,F , {Ft}t∈[0,1], P ) and let K be adapted to {Ft}t∈[0,1]

and with trajectories in ID. Choose a partition τ = {0 = t0 < t1 < t2 < . . . < tm = 1} of
[0, 1] and define τ -discretizations of the integrand K:

Kτ (t) = K(tk), if tk ≤ t < tk+1, k = 0, 1, . . . ,m− 1, Kτ (1) = K(1). (4.4)

Then it follows from the “dominated convergence” theorem (see [6, VIII.14]) that the ele-
mentary stochastic integrals

∫
Kτ
− dX converge uniformly in probability to

∫
K− dX when τ

condenses in a suitable manner. Here again the pair (Kτ , X) does not converge jointly to
(K,X) unless the relations between K and X are very special.

The purpose of the present note is to provide a criterion for finite dimensional conver-
gence of stochastic integrals and to demonstrate how this criterion can be used in particular
situations to obtain results on functional convergence with respect to various topologies on
the space ID.

4.2 The results

Let us denote by −→Df (Q) the finite dimensional convergence over set Q. For example
(Kn, Xn)−→Df (Q)(K0, X0) means that for every finite subset {0 ≤ t1 < t2 < . . . < tm ≤
1} ⊂ Q

(Kn(t1), Xn(t1),Kn(t2), Xn(t2) . . . ,Kn(tm), Xn(tm))
−→
D

(K0(t1), X0(t1),K0(t2), X2(t2) . . . ,K0(tm), X0(tm))

on the space IR2m.
It is finite dimensional convergence of (Kn, Xn) on a dense set Q ⊂ [0,1] and Condition

UT for {Xn} what implies that X0 is a semimartingale with respect to the natural filtration
generated by (K0, X0) (see [14, Lemma 1.3]). In what follows we will use this fact without
further reference.

For k ∈ ID, let Nη(k) be the number of η-oscillations of k in the interval [0, 1]. More
precisely: Nη(k) ≥ m if there are points 0 ≤ t1 ≤ t2 ≤ . . . t2m−1 ≤ t2m ≤ 1 such that
|k(t2j) − k(t2j−1)| > η, j = 1, 2, . . . ,m. By reasons to be clear later we shall say that a
sequence {Kn} of processes with trajectories in ID is uniformly S-tight if both {‖Kn‖∞ =
supt∈[0,1]K

n(t)} and {Nη(Kn)}, for each η > 0, are uniformly tight sequences of random
variables.

We will also need a variant of the well-known modulus of continuity ω′′. For k, x ∈ ID let

ω′′δ (k, x) = sup{min(|k(s)− k(t)|, |x(t)− x(u)|) : 0 ≤ s < t < u ≤ (s+ δ) ∧ 1}.

Theorem 4.2.1 For each n ∈ IN , let Xn be a semimartingale with respect to the stochastic
basis (Ωn,Fn, {Fnt }t∈[0,1], P

n), and let Kn be adapted to {Fnt }t∈[0,1] and with trajectories in
ID. Let Q ⊂ [0,1], 0, 1 ∈ Q, be dense.
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Suppose Condition UT holds for {Xn}, {Kn} is uniformly S-tight and we have joint finite
dimensional convergence over Q:

(Kn, Xn) −→
Df (Q)

(K0, X0), (4.5)

where both K0 and X0 have trajectories in ID. Further, suppose there are no oscillations of
Kn’s preceding oscillations of Xn’s:

lim
δ↘0

lim sup
n→∞

Pn(ω′′δ (Kn, Xn) > ε) = 0, ε > 0. (4.6)

Then we have ∫
Kn
− dX

n −→
Df (Q)

∫
K0
− dX

0. (4.7)

The proof (as well as proofs of other results below) is deferred to the next section.

Remark 4.2.2 Stricker [33] proved that Condition UT implies uniform S-tightness. Hence
all methods of verifying Condition UT apply to uniform S-tightness as well.

It was announced in the Introduction that Theorem 4.2.1 may serve as a tool for iden-
tification of the limit in various kinds of functional convergence of stochastic integrals. By
“functional” we mean convergence in distribution with respect to any topology τ on ID such
that relative compactness (in law) and finite dimensional convergence over a dense subset
Q ⊂ [0,1], 0, 1 ∈ Q, imply convergence in law. By the result due to Topsøe [36] Skorohod’s
J1 topology is functional in our sense. On the other hand, so called “pseudo-path” topology
considered by Meyer and Zheng [23] is not “functional”, for it is known that convergence of
sequences in this topology is just the convergence in (Lebesgue) measure. And it is easy to
find a sequence {xn} ⊂ ID which converges in measure to x0 ≡ 0 and is such that xn(q)→ 1
for each rational q ∈ [0, 1].

Corollary 4.2.3 Suppose all assumptions of Theorem 4.2.1 are in force and we know that
the laws of stochastic integrals

∫
Kn
−dX

n are relatively compact when ID is equipped with some
topology τ generating “functional” convergence.

Then the sequence {
∫
Kn
− dX

n}n∈IN converges in law with respect to τ (and the limiting
process is

∫
K0
− dX

0).

Given uniform τ -tightness ofXn’s the task of verifying uniform tightness of {
∫
Kn
−dX

n}n∈IN
can be quite easy. This is so, for instance, in Theorem 4.2.10 below. For metric topologies
on ID we have, however, results more direct than Corollary 4.2.3. We begin with the classical
Skorohod’s J1 topology, to emphasize the generality of the present approach.

Theorem 4.2.4 Let Kn’s, Xn’s and Q be as in Theorem 4.2.1. Suppose {Xn} fulfills
Condition UT, {Kn} is uniformly S-tight and finite dimensional convergence (4.5) holds.

If (4.6) is satisfied and Xn −→D X0 on the space (ID, J1) then on the space (ID ([0, 1] :
IR2), J1)

(Xn,

∫
Kn
− dX

n) −→
D

(X0,

∫
K0
− dX

0). (4.8)
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Remark 4.2.5 Comparing to Theorem 4.1.1 we require very weak convergence of Kn’s (in
S-topology—see below) and much less information on the joint convergence - finite dimen-
sional convergence and (4.6).

Remark 4.2.6 The crucial property (4.6) (or (4.19) below) holds if either Xn’s or Kn’s
are C-tight, i.e. are uniformly J1-tight with all limiting laws concentrated on C([0, 1] : IR1).
Hence our Theorem 4.2.4 generalizes Theorem 4.7 of [19] and is a step in a similar direction
as Theorem 4.8 ibid., with dramatically simpler formulation.

Without any change in the proof one can obtain limit results for a variety of topologies
on ID. Let ρ be a metric on ID such that the topology Oρ generated by ρ is coarser than
Skorohod’s J1 topology, but rich enough to preserve the same family of Borel subsets. This
guarantees that all probability measures on (ID,Oρ) are tight and that Xn −→D X0 on
(ID,Oρ) if, and only if, Xn, n = 0, 1, 2, . . . admit the almost surely convergent Skorohod
representation on the Lebesgue interval ([0, 1],B[0,1], `). In addition we assume that ρ satisfies

ρ(x, y) ≤ C‖x− y‖∞, x, y ∈ ID. (4.9)

for some C > 0
From the point of view of limit theorems it is natural to consider only metrics which are

consistent with convergence of elementary integrals. To explain this notion, take a partition
τ = {0 = t0 < t1 < t2 < . . . < tm = 1}, a sequence aτ = (a0, a1, . . . , am) ∈ IRm and x ∈ ID
and define

(
∫
aτ− dx)(t) =

m∑
k=1

ak−1(x(tk ∧ t)− x(tk−1 ∧ t)).

The consistency means that for every τ and every sequence (an)τ → (a0)τ (in IRm), ρ(xn, x0)→
0 implies

ρ(
∫

(an)τ− dx
n,

∫
(a0)τ− dx

0)→ 0. (4.10)

(At least metrics generating Skorohod’s topologies J1 and M1 are consistent with convergence
of elementary integrals).

Let us say that ρ is compatible with integration if all above requirements are satisfied.

Theorem 4.2.7 Let Kn’s, Xn’s and Q be as in Theorem 4.2.1 and let metric ρ on ID be
compatible with integration. Suppose {Xn} fulfills Condition UT, {Kn} is uniformly S-tight
and finite dimensional convergence (4.5) holds.

If (4.6) is satisfied and Xn −→D X0 on the space (ID,Oρ) then on the same space∫
Kn
− dX

n −→
D

∫
K0
− dX

0. (4.11)

Remark 4.2.8 Suppose all processes are defined on the same probability space (Ω,F , P )
and in assumptions of Theorem 4.2.7 we replace relation (4.5) with

Kn(t) −→
P

K0(t), Xn(t) −→
P

X0(t), t ∈ Q, (4.12)

and Xn −→D X0 with

lim
n→∞

P (ρ(Xn, X0) > ε) = 0, ε > 0. (4.13)
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Then it follows from the proof of Theorem 4.2.7 that (4.11) changes to

lim
n→∞

P (ρ(
∫
Kn
− dX

n,

∫
K0
− dX

0) > ε) = 0, ε > 0. (4.14)

In a similar way one can transform Theorem 4.2.1.

Dealing with metrics ρ generating topologies strictly finer than the Skorohod’s J1 topology
is difficult since such topologies (if any interesting) may be nonseparable. Despite this we
have a result for the convergence uniformly in probability, generalizing Theorem 1.9 of [21].

Theorem 4.2.9 Let Kn’s, Xn’s and Q be as in Theorem 4.2.1, with the additional assump-
tion that all processes are defined on the same probability space: (Ωn,Fn, Pn) = (Ω,F , P ) .
Suppose Condition UT holds for Xn’s, the sequence {Kn} is uniformly S-tight, (4.6) is sat-
isfied and

Kn(t) −→
P

K0(t), t ∈ Q, ‖Xn − X0‖∞ −→
P

0. (4.15)

Then also
‖
∫
Kn
− dX

n −
∫
K0
− dX

0‖∞ −→
P

0. (4.16)

In fact in Theorem 4.2.1 we have more than finite dimensional convergence only: stochastic
integrals already “functionally” converge with respect to an ultraweak topology on ID, intro-
duced in Paper III and called there “S-topology”. This non-Skorohod sequential topology is
not metrisable, but it is still good enough to build a satisfactory theory of the convergence in
distribution. In particular:

• K ⊂ ID is S-relatively compact iff

sup
k∈K

sup
t∈[0,1]

|k(t)| ≤ CK < +∞, sup
k∈K

Nη(k) ≤ Cη < +∞, η > 0. (4.17)

• The σ-field BS of Borel subsets for S coincides with the usual σ-field generated by
projections (or evaluations) on ID: BS = σ(πt : t ∈ [0, 1]).

• The set P(ID, S) of S-tight probability measures is exactly the set of distributions of
stochastic processes with trajectories in ID: P(ID, S) = P(ID). And for a family {Kn}
of stochastic processes uniform tightness with respect to S coincides with the uniform
S-tightness introduced at the beginning of this section.

• S is weaker than Skorohod’s J1-topology. Since the latter is Polish, S is Lusin in the
sense of Fernique. Even more is true: (ID, S) is a linear topological space and so is
completely regular.

• On P(ID) there exists a unique sequential topology O( ∗=⇒) (where ∗=⇒ denotes the
convergence determining the topology) which is finer than the S-weak topology and for
which ∗=⇒-relative compactness coincides with uniform S-tightness. In particular, for
O( ∗=⇒) both the direct and the converse Prohorov’s theorems are valid.

• LetXn
∗−→D X0 means that the laws of processesXn converge in our sense: L(Xn) ∗=⇒

L(X0). Suppose Xn
∗−→D X0. Then in each subsequence {Xnk

}k∈IN one can find a
further subsequence {Xnkl

}l∈IN such that:
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– {X0} ∪ {Xnkl
: l = 1, 2, . . .} admit the usual a.s. Skorohod representation on

([0, 1],B[0,1]);
– outside some countable subset of [0, 1) all finite dimensional distributions of {Xnkl

}
converge to those of X0.

• There are many S-continuous functionals. As examples may serve mappings of the form
ID 3 x 7→

∫ 1
0 Φ(x(s)) dµ(s) ∈ IR1, where µ is a finite atomless measure on [0, 1] and Φ

is continuous.

Theorem 4.2.10 In assumptions of Theorem 4.2.1 we have∫
Kn
− dX

n −→
D

∫
K0
− dX

0.

on the space (ID, S).

We have noticed that uniform S-tightness implies convergence of finite dimensional dis-
tributions outside a countable subset of [0, 1) and for some subsequence. By Remark 4.2.2
Condition UT also possesses this property. Hence under tightness assumptions only we can
always extract a subsequence (Knk , Xnk) and a dense set Q′ ⊂ IR1, 1 ∈ Q′, for which joint
finite dimensional convergence over Q′ holds. It is however possible that 0 6∈ Q′ and this fact
may influence the convergence of stochastic integrals.

Example 4.2.11 Let kn(t) = 1 6= 0 and let xn(t) = 1I[1/n,1](t), n = 1, 2, . . .. Then all
assumptions of Theorem 4.2.1 are satisfied, except that (4.5) holds for Q′ = (0,1]. But∫

kn− dx
n = xn 6→ 0 =

∫
k0
− dx

0,

in any topology which generates “functional” convergence.

There is an easy way to overcome this difficulty. Let us consider an embedding ID ([0, 1] :
IR1) 3 x 7→ x̃ ∈ ID ([−1, 1] : IR1) given by

x̃(t) =
{
x(t) if t ∈ [0, 1];

0 if t ∈ [−1, 0).
(4.18)

and let
ω̃′′δ (k, x) = ω′′δ (k̃, x̃),

with ω′′δ redefined on ID ([−1, 1] : IR1) in a natural manner.

Theorem 4.2.12 Let Kn and Xn be as in Theorem 4.2.1. Suppose Condition UT holds for
{Xn}, Kn’s are uniformly S-tight and

lim
δ↘0

lim sup
n→∞

Pn(ω̃′′δ (Kn, Xn) > ε) = 0, ε > 0. (4.19)

Then along some subsequence {nk}∫
Knk
− dXnk −→

D

∫
K0
− dX

0, (4.20)

on the space (ID, S), where K0 has trajectories in ID and X0 is a semimartingale.
If, in addition, {Xn} is uniformly Oρ-tight for metric ρ compatible with integration, then

(4.20) may be strengthen to convergence on (ID,Oρ)
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Remark 4.2.13 The above theorem may be viewed as a specific criterion of compactness
for sets of stochastic integrals: the closure (in a suitable topology) still contains stochastic
integrals only.

4.3 Proofs

4.3.1 Basic lemma

Lemma 4.3.1 Suppose {Kn} is uniformly S-tight, {Xn} satisfies Condition UT and (4.6)
holds. Then for any sequence τm = {0 = tm,0 < tm,1 < . . . < tm,km = 1} of partitions of [0, 1]
such that

|τm| = max{tm,k − tm,k−1 : k = 1, 2, . . . , km} → 0, (4.21)

we have

lim
m→∞

sup
n
P ( sup

t∈[0,1]
|
∫

(Kn)τm− dXn(t)−
∫
Kn
− dX

n(t)| > ε) = 0, ε > 0. (4.22)

Proof. Recall that (Kn)τm is the discretization of Kn given by formula (4.4). If n ∈ IN is
fixed and m→∞ then by the “dominated convergence” theorem

lim
m→∞

P ( sup
t∈[0,1]

|
∫

(Kn)τm− dXn(t)−
∫
Kn
− dX

n(t)| > ε) = 0, ε > 0. (4.23)

It follows that we may replace
∫
Kn
− dX

n with
∫

(Kn)τmn
− dXn, if mn is large enough. Sum-

marizing, it is enough to prove that for each ε > 0 and mn such that |τmn | < |τm|

lim
m→∞

sup
n∈IN

P ( max
t∈[0,1]

|
∫

(Kn)τm− dXn(t)−
∫

(Kn)τmn
− dXn(t)| > ε) = 0. (4.24)

Let us fix η > 0, n ∈ IN , τm and τmn , |τmn | < |τm|. To make the formulas more readable, let
us change slightly the notation and set

τm = {0 = t0 < t1 < . . . < tkm = 1};
τmn = {0 = s0 < s1 < . . . < skmn

= 1}.

For k = 1, . . . , km and j = 0, 1, 2, . . . define

σk,0 = tk−1 (4.25)
σk,j+1 = min{sl−1 ≥ σk,j : |Kn(sl−1)−Kn(σk,j)| > η} ∧ tk. (4.26)

(We use the convention that min ∅ = 1). Then for t ∈ [0, 1] we can decompose∫
(Kn)τm− dXn(t)−

∫
(Kn)τmn

− dXn(t) =

=
k∑
i=1

∞∑
j=1

∑
σi,j−1≤sl−1<σi,j

(Kn(σi,0)−Kn(sl−1))(Xn(sl ∧ t)−Xn(sl−1 ∧ t)).
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Let us observe that∑
σi,j−1≤sl−1<σi,j

(Kn(σi,0)−Kn(sl−1))(Xn(sl ∧ t)−Xn(sl−1 ∧ t))

=
∑

σi,j−1≤sl−1<σi,j

(Kn(σi,0)−Kn(σi,j−1))(Xn(sl ∧ t)−Xn(sl−1 ∧ t))

+
∑

σi,j−1≤sl−1<σi,j

(Kn(σi,j−1)−Kn(sl−1))(Xn(sl ∧ t)−Xn(sl−1 ∧ t))

= (Kn(σi,0)−Kn(σi,j−1))(Xn(σi,j ∧ t)−Xn(σi,j−1 ∧ t))
+

∑
σi,j−1≤sl−1<σi,j

(Kn(σi,j−1)−Kn(sl−1))(Xn(sl ∧ t)−Xn(sl−1 ∧ t))

Finally, we have∫
(Kn)τm− dXn(t)−

∫
(Kn)τmn

− dXn(t) =

=
k∑
i=1

∞∑
j=2

(Kn(σi,0)−Kn(σi,j−1))(Xn(σi,j ∧ t)−Xn(σi,j−1 ∧ t))

+
k∑
i=1

∞∑
j=1

∑
σi,j−1≤sl−1<σi,j

(Kn(σi,j−1)−Kn(sl−1))(Xn(sl ∧ t)−Xn(sl−1 ∧ t))

= Inη (t) + Jnη (t)

Using definitions of Nη(·) and ω′′δ (·, ·) given at the beginning of Section 3.2 and taking into ac-
count that for fixed ω in the sum Inη (t, ω) there is no more than Nη(Kn(ω)) nonzero summands
we can estimate

sup
t∈[0,1]

|Inη (t)|

≤ Nη(Kn) ·
· sup

1≤i≤km
j∈IN, t∈[0,1]

{max{|Kn(σi,0)−Kn(σi,j−1)|, |Xn(σi,j ∧ t)−Xn(σi,j−1 ∧ t)|} ·

·min{|Kn(σi,0)−Kn(σi,j−1)|, |Xn(σi,j ∧ t)−Xn(σi,j−1 ∧ t)|}}
≤ Nη(Kn) · 2(‖Kn‖∞ + ‖Xn‖∞) · ω′′|τm|(K

n, Xn).

Since Condition UT implies tightness of ‖Xn‖∞ (see e.g. [14], Lemma 1.2) we see that when
η is fixed and |τm| → 0 then supt∈[0,1] |Inη (t)| converges in probability to 0 uniformly in n.

It remains to prove that by the choice of η random variables supt∈[0,1] |Jnη (t)| can be made
as small as desired (in probability, uniformly in n). But the processes η−1 ·Jnη are elementary
stochastic integrals appearing in the definition of Condition UT. By Lemma 1.1 [14] the family
of random variables {supt∈[0,1] η

−1 · |Jnη (t)| : n ∈ IN, η > 0} is uniformly tight and we obtain
the required property.

4.3.2 Proof of Theorem 4.2.1

If Q is not countable, replace it with its proper countable dense subset containing 0 and 1.
Let us choose a sequence {τm} of partitions of [0, 1] such that |τm| → 0, τm ⊂ τm+1 ⊂ Q,
m = 1, 2, . . . and ∪∞m=1τm = Q.
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Let Q0 = {q1 < q2 . . . < qr} ⊂ Q and let m be so large that Q0 ⊂ τm = {0 = ≈0 < ≈1 <
. . . < ≈km} as well as

sup
n
P ( sup

q∈Q0

|
∫

(Kn)τm− dXn(q)−
∫
Kn
− dX

n(q)| > ε) < ε, (4.27)

for n = 0, 1, 2, . . . (the latter by Lemma 4.3.1). For each t ∈ τm the integral
∫

(Kn)τm− dXn(t)
is a continuous function of the vector

(Kn(0), Xn(0),Kn(t1), Xn(t1), . . . ,Kn(tkm), Xn(tkm)).

Hence (4.5) implies ∫
(Kn)τm− dXn −→

Df (τm)

∫
(K0)τm− dX0.

and by Q0 ⊂ τm also ∫
(Kn)τm− dXn −→

Df (Q0)

∫
(K0)τm− dX0. (4.28)

The theorem follows now by (4.27) and (4.28).

4.3.3 Proof of Theorems 4.2.4–4.2.9

We shall prove Theorem 4.2.7 first.
A variant of the Skorohod representation theorem is necessary.

Lemma 4.3.2 For each subsequence nk there exists a further subsequence nkl
and random

elements L0, L1, . . . with values in IRQ and Y 0, Y 1, . . . with values in (ID,Oρ) and defined on
the Lebesgue interval such that

((L0(q), Y 0(q))q∈Q, Y
0) ∼ ((K0(q), X0(q))q∈Q, X

0),

for each l = 1, 2, . . .

((Ll(q), Y l(q))q∈Q, Y
l) ∼ ((Knkl (q), Xnkl (q))q∈Q, X

nkl ),

and for almost every ω ∈ [0, 1]

Ll(q, ω)→ L0(q, ω), Y l(q, ω)→ Y 0(q, ω), q ∈ Q,

and
ρ(Y l(ω), Y 0(ω))→ 0.

Proof. We have separate information on joint finite dimensional convergence and conver-
gence on (ID,Oρ). By tightness of both components, in each subsequence we may extract a
further subsequence such that the joint convergence holds. Let (U l, V l, Z l) be the Skorohod
representation for such subsequence. In particular, we have

(V l, Z l) ∼ (h(Xnkl ), Xnkl ), (4.29)

where h : ID → IRQ is a measurable mapping given by h(x) = (x(q))q∈Q. Hence (4.29) implies
that V l = h(Z l) `-a.s. and so the lemma follows.



4.3. PROOFS 49

Because of Lemma 4.3.2 we may and do assume that ρ(Xn(ω), X0(ω)) → 0 and that
Kn(q, ω) → K0(q, ω), Xn(q, ω) → X0(q, ω), q ∈ Q. Using the consistency of ρ with respect
to elementary integrals we get for each fixed τm

ρ(
∫

(Kn)τm− dXn,

∫
(K0)τm− dX0)→ 0 a.s.

Further, by (4.9) and (4.22) we have for each ε > 0 and as m→∞

sup
n∈IN

P (ρ(
∫

(Kn)τm− dXn,

∫
Kn
− dX

n) > ε)

≤ sup
n∈IN

P (‖
∫

(Kn)τm− dXn −
∫
Kn
− dX

n‖∞ >
ε

C
)→ 0.

Similarly, by (4.23)

P (ρ(
∫

(K0)τm− dX0,

∫
K0
− dX

0) > ε)

≤ P (‖
∫

(K0)τm− dX0 −
∫
K0
− dX

0‖∞ >
ε

C
)→ 0, as m→∞, ε > 0.

Hence
∫
K
nkl
− dXnkl −→D

∫
K0
− dX

0 on (ID,Oρ). This concludes the proof, for nkl
was a

subsequence of an arbitrary subsequence nk.
The proof of Theorem 4.2.9 is essentially the same (except it does not require reduction

via the a.s. Skorohod representation).

4.3.4 Proof of Theorem 4.2.10

It has been proved in Paper III that the convergence ∗=⇒ in P(ID) (induced by S-topology)
is “functional” in our sense, i.e. finite dimensional convergence and relative ∗=⇒-compactness
imply ∗=⇒-convergence. Hence in view of (4.7) it suffices to prove S-uniform tightness of
{
∫
Kn
− dX

n}. Using [21, Lemma 1.6], we check that processes {
∫
Kn
− dX

n} satisfy Condition
UT. Now the mentioned already result due to Stricker [33] (see Remark 4.2.2) gives us S-
uniform tightness of {

∫
Kn
− dX

n} and finishes the proof of Theorem 4.2.10.

4.3.5 Proof of Theorem 4.2.12

Let us embed our processes into the space ID [−1, 1] : IR1) via mapping (4.18). Then we have
finite dimensional convergence on Q1 = Q ∪ [−1,0). Since the left end of the interval of
integration belons to Q1, it is possible to apply previous results. It remains to observe that∫

]−1,t]
Kn(s−) dXn(s) =

∫
]0,t]

Kn(s−) dXn(s), n = 1, 2, . . . .
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(1967) 1–92.

[12] Fernique, X., Convergence en loi de variables alétoires et de fonctions alétoires, pro-
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