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Abstract

We discuss limiting procedures which support the interpretation
of stochastic differential equations.

1 Introduction

When somebody writes down differential equations, a commonly accepted
procedure is being used: the differential equation is the limit for difference
equations built upon a well-understood model.

It is rather difficult to find a similar level of evidence in the area of stochas-
tic differential equations. For example, let us consider so-called “Langevin
equation”, for the sake of brevity in dimension one only:
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In this equation X (¢) is the coordinate of the sample particle, o is a “viscosity
coefficient” and dB;/dt is “intended to represent the effect of a small shock
at time t” (see [5]). While an explanation along the line above may be
satisfactory for most of physicists, certainly it is not rigorous eduction of the
Langevin equation. The approach of mathematicians is also typical. They
simply do not bother about the process of eduction and pass immediately to
the integral version:

dX(t) _dX
dt 7 dt
where B(t) is a Brownian motion and X is as before ([5]). Sometimes it is

]
also nice to introduce the velocity process V (¢) = dX/dt(t) and consider the
Langevin equation in the most elegant form

(0) — a(X (1) = X(0)) — o B(1), (2)

V()= V(0) —a / V(s)ds — o B(1). (3)
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Even if an attempt to convince the reader is undertaken (as in the classical
textbook by Breiman [1] or monograph [7]) some external and secret forces
(the process of “momentum transfer”) are invited and equipped with all
necessary but not justified (e.g. continuity in time) properties.

In numerical approximations as well as in simulations one can use a dis-
crete version of (3) (see e.g. [6]), but contrary to the deterministic case the
discretization does not help in better understanding of (3): why do random
forces act regularly in time?

The present note aims at providing a “naive” mechanical model in which
viscosity and diffusion appear as macroscopic quantities and there is nothing
artificial at the microscopic level.

2 The model

We shall deal with a rarefied simple gas and a sample particle of smoke with
mass M. Suppose an elastic collision of the sample particle with a particle of
gas happens. If the particle of smoke has the velocity V' and the gas particle
has mass m, m < M, and velocity U, then the change of V after collision
will be

AV =CU-V), (4)

where C' = C(M,m) = 2m/(M + m) (for simplicity we restrict ourselves
to one dimensional space). Further, suppose such collisions take place at
subsequent random times 7y, 7, ..., with gas particles possessing the same
masses but randomly chosen velocities Uy, Us, .... Then we have

AV(Tk) = C(Uk — V(Tk—)), (5)

where Uy, Uj, ... are independent random variables with normal distribution
N(0,kT/m). Here k is the Boltzmann constant and 7T is the absolute tem-
perature. The variance of U, must be equal to kT /m because of the “law
of equipartition of energy” which determines the average kinetic energy per
degree of freedom:
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Finally, suppose that random times 71, 75,... are such that the number of
collisions up to time ¢ is a Poisson process

N(t)=N\t) =3 I, 400)(t), € RY,
k=1

with intensity A dt. This gives us the independence of the number of collisions
in disjoint time intervals. Let us notice that X is the average number of



collisions in unit time interval and that the average number of collisions in
the given interval is proportional to the length of the interval.
Summing (5) up to time ¢ we get

V(it)-V(0)=CUt)-C V(s—)dN(s), (7)
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where U(t) = U™Mt) = > o<t Ur. We can easily solve this equation:

V(t) = C(Y(t))_l(/
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Y (s)dU(s) + V(0)), (8)
where
Y{t) = Y™ (1) = exp(—(In(1 — C(M, m))N(2)

and we use the Lebesgue-Stieltjes integral.
Let us assume that A — 400 and m — 0 in such a way that

2Am —b, 0 <b< +oo. (9)

Then ,
YR s e e R (10)

and functionally

C(Mm) U™ 1) — Zj‘bfT

where {B(t), t € IR"} is a standard Brownian motion. Given (10) and (11),
it is natural to expect that the solution (8) converges functionally to the

V(t) = e—%f(\/%\zw /]OJ] e dB(s) + V(O)), (12)

which solves the Langevin equation

B(1), (11)

process

MV (t)=V(0)+b o V(s)ds = V2bkT B(t). (13)
Both conjectures are true. The point is this is not an ad hoc result but a
corollary to the very general limit result for stochastic integrals - Theorem
2.6 in [2] or Theorem 1 in [8] (see also [3] for somewhat different approach
and examples illustrating the theory).
We have obtained the solution of the Langevin equation for the particular
model as the limit of solutions of simpler equations. The following are worth
emphasizing:

e The coefficient b in (13) is a macroscopic quantity (interpreted as the
resistance of the environment caused by the “viscosity” of the gas) and
it does not appear at the microscopic level described by equation (7).
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Relation (9) provides a natural interpretation for the coefficient b. Sim-
ilar considerations for more complicated models may contribute to the
analysis of the “Einstein relation”, as defined in [4].

The final argument on passing to the limit was based on very gen-
eral limit results and so seems to be applicable in many other, more
advanced cases.

The physical content of this paper is, of course, not very substantial.
But it was not the intention of the paper to consider the most general
case and to go into technicalities. Instead, we have tried to focus on the
fact that the stochastic differential equation (7) is, in some sense, much
better description of the model than the commonly accepted limiting
equation (13).
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