
An eduction of the Lengevin equationAdam Jakubowski�Uniwersytet Miko laja Kopernika, Toru�n, PolandAbstractWe discuss limiting procedures which support the interpretationof stochastic di�erential equations.1 IntroductionWhen somebody writes down di�erential equations, a commonly acceptedprocedure is being used: the di�erential equation is the limit for di�erenceequations built upon a well-understood model.It is rather di�cult to �nd a similar level of evidence in the area of stochas-tic di�erential equations. For example, let us consider so-called \Langevinequation", for the sake of brevity in dimension one only:d2Xdt2 (t) + �dXdt (t) = �dBtdt : (1)In this equation X(t) is the coordinate of the sample particle, � is a \viscositycoe�cient" and dBt=dt is \intended to represent the e�ect of a small shockat time t" (see [5]). While an explanation along the line above may besatisfactory for most of physicists, certainly it is not rigorous eduction of theLangevin equation. The approach of mathematicians is also typical. Theysimply do not bother about the process of eduction and pass immediately tothe integral version:dXdt (t) = dXdt (0) � �(X(t) �X(0))� �B(t); (2)where B(t) is a Brownian motion and X is as before ([5]). Sometimes it isalso nice to introduce the velocity process V (t) = dX=dt(t) and consider theLangevin equation in the most elegant formV (t) = V (0) � � Z]0;t] V (s) ds� �B(t): (3)�Research supported by Komitet Bada�n Naukowych under the Grant No 2 1108 91 01.1



Even if an attempt to convince the reader is undertaken (as in the classicaltextbook by Breiman [1] or monograph [7]) some external and secret forces(the process of \momentum transfer") are invited and equipped with allnecessary but not justi�ed (e.g. continuity in time) properties.In numerical approximations as well as in simulations one can use a dis-crete version of (3) (see e.g. [6]), but contrary to the deterministic case thediscretization does not help in better understanding of (3): why do randomforces act regularly in time?The present note aims at providing a \naive" mechanical model in whichviscosity and di�usion appear as macroscopic quantities and there is nothingarti�cial at the microscopic level.2 The modelWe shall deal with a rare�ed simple gas and a sample particle of smoke withmass M . Suppose an elastic collision of the sample particle with a particle ofgas happens. If the particle of smoke has the velocity V and the gas particlehas mass m, m < M , and velocity U , then the change of V after collisionwill be �V = C(U � V ); (4)where C = C(M;m) = 2m=(M + m) (for simplicity we restrict ourselvesto one dimensional space). Further, suppose such collisions take place atsubsequent random times �1; �2; : : :, with gas particles possessing the samemasses but randomly chosen velocities U1; U2; : : :. Then we have�V (�k) = C(Uk � V (�k�)); (5)where U1; U2; : : : are independent random variables with normal distributionN (0; kT=m). Here k is the Boltzmann constant and T is the absolute tem-perature. The variance of Uk must be equal to kT=m because of the \lawof equipartition of energy" which determines the average kinetic energy perdegree of freedom: 12mE(Uk)2 = 12kT: (6)Finally, suppose that random times �1; �2; : : : are such that the number ofcollisions up to time t is a Poisson processN(t) = N�(t) = 1Xk=1 1I[�k;+1)(t); t 2 IR+;with intensity � dt. This gives us the independence of the number of collisionsin disjoint time intervals. Let us notice that � is the average number of2



collisions in unit time interval and that the average number of collisions inthe given interval is proportional to the length of the interval.Summing (5) up to time t we getV (t)� V (0) = CU(t)� C Z]0;t] V (s�) dN(s); (7)where U(t) = Um;�(t) = P�k�t Uk. We can easily solve this equation:V (t) = C�Y (t)��1� Z]0;t] Y (s) dU(s) + V (0)�; (8)where Y (t) = Y m;�(t) = exp(�(ln(1 � C(M;m)))N�(t))and we use the Lebesgue-Stieltjes integral.Let us assume that �! +1 and m! 0 in such a way that2�m�! b; 0 < b < +1: (9)Then Y m;�(t) �!P e bM t; t 2 IR+; (10)and functionally C(M;m)Um;�(t) �!D p2bkTM B(t); (11)where fB(t); t 2 IR+g is a standard Brownian motion. Given (10) and (11),it is natural to expect that the solution (8) converges functionally to theprocess V (t) = e� bM t�p2bkTM Z]0;t] e bM s dB(s) + V (0)�; (12)which solves the Langevin equationM(V (t)� V (0)) + b Z]0;t] V (s) ds = p2bkTB(t): (13)Both conjectures are true. The point is this is not an ad hoc result but acorollary to the very general limit result for stochastic integrals - Theorem2.6 in [2] or Theorem 1 in [8] (see also [3] for somewhat di�erent approachand examples illustrating the theory).We have obtained the solution of the Langevin equation for the particularmodel as the limit of solutions of simpler equations. The following are worthemphasizing:� The coe�cient b in (13) is a macroscopic quantity (interpreted as theresistance of the environment caused by the \viscosity" of the gas) andit does not appear at the microscopic level described by equation (7).3



� Relation (9) provides a natural interpretation for the coe�cient b. Sim-ilar considerations for more complicated models may contribute to theanalysis of the \Einstein relation", as de�ned in [4].� The �nal argument on passing to the limit was based on very gen-eral limit results and so seems to be applicable in many other, moreadvanced cases.� The physical content of this paper is, of course, not very substantial.But it was not the intention of the paper to consider the most generalcase and to go into technicalities. Instead, we have tried to focus on thefact that the stochastic di�erential equation (7) is, in some sense, muchbetter description of the model than the commonly accepted limitingequation (13).References[1] Breiman, L., Probability, Addison-Wesley, Reading, Mass. 1968.[2] Jakubowski, A., M�emin, J., Pages, G., Convergence en loi des suitesd'int�egrales stochastiques sur l'espace ID1 de Skorokhod, Probab. Th.Rel. Fields 81 (1989) 111{137.[3] Kurtz, T., Protter, P., Weak limit theorems for stochastic integralsand stochastic di�erential equations, Ann. Probab. 19 (1991) 1035{1070.[4] Lebowitz, J.L., Rost, H., The Einstein relation for the displacement ofa test particle in a random environment, (1994+), to appear in Stoch.Proc. Appl..[5] M�etivier, M., Semimartingales, Walter de Gruyter, Berlin 1982.[6] �ksendal, B., Stochastic Di�erential Equations, 3rd Ed.,Springer, Berlin 1992.[7] Schuss, Z., Theory and Applications of Stochastic Di�erentialEquations, Wiley, New York 1980.[8] S lomi�nski, L., Stability of strong solutions of stochastic di�erentialequations, Stoch. Proc. Appl. 31 (1989) 173{202.4
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