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ABSTRACT

Necessary and sufficient conditions are given for multidimensional
p - stable limit theorems (i.e. theorems on convergence of normal-
ized partial sums Sn/bn of a stationary sequence of random vec-
tors to a non-degenerate strictly p-stable limiting law µ, with 1/p-
regularly varying normalizing sequence bn). It is proved that sim-
ilarly as in the one-dimensional case the conditions for 0 < p < 2
consist of two parts: one responsible for (very weak) mixing prop-
erties and another, describing asymptotics of probabilities of large
deviations (with a minor additional condition for p = 1). The pa-
per focuses on effective methods of proving such large deviation
results.
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1. A MULTIDIMENSIONAL STABLE LIMIT THEO-
REM

Let X1, X2, . . . be a stationary sequence of d-dimensional ran-
dom vectors with partial sums S0 = 0, Sn =

∑n
j=1 Xj. Following

Jakubowski (1993) we will say that a p-stable limit theorem holds
for {Xj} if there exist a non-degenerate strictly p-stable law µ on
IRd and a 1/p-regularly varying sequence bn, such that

Sn

bn
−→D µ, as n → +∞. (1)

Recall that a p-stable law µ is strictly stable if for all a, b > 0
one can find c = c(a, b) > 0 such that (µ◦R−1

a )∗(µ◦R−1
b ) = µ◦R−1

c ,
where for a > 0, Ra(x) = a · x is a rescaling of IRd. For the case
p 6= 1, 2, the logarithm log µ̂(y) of the characteristic function of a
strictly p-stable law can be written in the form

ηp

∫

{s∈Sd−1;〈y,s〉>0} |〈y, s〉|pκ(ds) + ηp

∫

{s∈Sd−1;〈y,s〉<0} |〈y, s〉|pκ(ds),

(2)
where y ∈ IRd, Sd−1 is the d − 1-dimensional unit sphere in IRd,
κ is a finite Borel measure on Sd−1 and

ηp =





∫ ∞
0

(eiu − 1)u−(1+p) du if 0 < p < 1,

∫ ∞
0

(eiu − 1− iu)u−(1+p) du if 1 < p < 2.

(3)

For p = 1, a law µ is strictly stable if it is a shift of a symmetric
strictly stable law with logarithm of the characteristic function
of the form

−(1/2)π
∫

Sd−1
|〈y, s〉|κ(ds), (4)

where κ is a symmetric measure on Sd−1. Let us denote by
Stab (p, κ) the strictly stable law with logarithm of the charac-
teristic function given by formulas (2) or (4). For more informa-
tion on stable laws and processes we refer to Samorodnitsky and
Taqqu (1994).



For random variables (d = 1) Jakubowski (1993, 1997) ob-
tained necessary and sufficient conditions for a p-stable limit the-
orem to hold. In the case of heavy-tailed random variables (i.e. if
0 < p < 2) the conditions essentially consist of two parts: a part
responsible for “mixing” properties (Condition B1 below) and a
part describing asymptotic behaviour of probabilities of large de-
viations (Condition LD1 below). In both cases subscript 1 stands
for the dimension d = 1. Formal statements are as follows.

• Condition B1. For each λ ∈ IR1, and as n → +∞
max

1≤k,l≤n
k+l≤n

|E eiλ(Sk+l/bn) − Eeiλ(Sk/bn) · Eeiλ(Sl/bn)| −→ 0. (5)

• Condition LD1. There exists a sequence rn → +∞ such
that for all sequences xn increasing to +∞ slowly enough
(i.e. xn = o(rn))

xp
nP (Sn/bn > xn)−→ c+, xp

nP (Sn/bn < −xn)−→ c−, (6)

where 0 < c+ + c− < +∞ and bn → +∞.

The relations between Conditions B1 and LD1 and p-stable
limit theorems are particularly appealing in the case p 6= 1, as
the following theorem shows (see Jakubowski, 1993 for the case
0 < p < 1 and 1997 for the case 1 < p < 2).

Theorem 1 Let 0 < p < 1 or 1 < p < 2. Suppose Conditions B1

and LD1 hold with bn → +∞ and 0 < c+ + c− < +∞. Then bn

varies 1/p-regularly and as n → +∞
Sn

bn
−→D Stab (p, κ(c+,c−)), (7)

where κ(c+,c−){+1} = c+ and κ(c+,c−){−1} = c− .
Conversely, (7) with c+ + c− > 0 and 1/p-regular variation of

bn imply Conditions B1 and LD1.



Notice that for d = 1 we have Sd−1 = S0 = {−1, +1}.
For p = 1 a minor additional assumption on centering is neces-

sary (see Theorem 2.2, Jakubowski, 1997), which is automatically
satisfied, when the Sn’s are symmetric:

Theorem 2 If p = 1 and for each n ∈ IN , the law of Sn is
symmetric, then Condition B1 and Condition LD1 with 0 < c+ =
c− = c < +∞ hold if, and only if,

Sn

bn
−→
D

Stab (1, κ(c,c)), as n → +∞, (8)

where 0 < c < +∞ and bn is regularly varying with exponent 1.

The purpose of the present note is to prove a multidimensional
generalization of the above results.

Let us begin with introducing a multidimensional version of
Condition B1.

• Condition Bd. For each y ∈ IRd, and as n → +∞
max

1≤k,l≤n
k+l≤n

|E ei〈y,Sk+l/bn〉 − Eei〈y,Sk/bn〉 · Eei〈y,Sl/bn〉| −→ 0. (9)

Condition Bd describes a kind of “asymptotic independence”
of partial sums. It is however essentially weaker than mixing
conditions (such as α-mixing) usually considered in limit theory
for sums, for there exist non-ergodic sequences satisfying (9). On
the other hand Condition Bd held for each y ∈ IRd implies (under
mild additional assumptions) uniform convergence over bounded
subsets of IRd:

max
1≤k,l≤n
k+l≤n

sup
‖y‖≤K

|E ei〈y,Sk+l/bn〉 − Eei〈y,Sk/bn〉 · Eei〈y,Sl/bn〉| −→ 0, (10)

for every K > 0 and as n → +∞. In particular, (10) implies
that given Condition Bd for some normalizing sequence {bn}, we
obtain it for all sequences b′n such that bn ≤ Cb′n, n ∈ IN , for some



constant C > 0. This has been observed by Szewczak (1996).
For examples of sequences satisfying Condition Bd and further
discussion in the case d = 1 (which can be easily extended to
several dimensions) we refer to Jakubowski (1991,1993).

The form of Condition LDd is somewhat more complicated
than (6) and involves convergence to a measure which is, in gen-
eral, finite only outside of every neighborhood of 0 ∈ IRd (hence
σ-finite). In our theorems such measures will always be Lévy
measures, but from the point of view of sufficiency of Condition
LDd it is reasonable to formulate this condition in full generality.

For further purposes, let us denote by ν(p, κ) the Lévy mea-
sure of the infinite divisible law Stab (p, κ). This means that for
“radial” sets A of the form A = ∪x∈Bx · V , where B ∈ BIR+ and
V ∈ BSd−1, we have

ν(p, κ)(A) =
∫

B
u−1−p du · κ(V ). (11)

Clearly, ν(p, κ) = 0 if, and only if, κ = 0 and ν(p, κ) is symmetric
if, and only if, κ is symmetric.

• Condition LDd. There exists a sequence bn → +∞ and a
measure ν on IRd, finite outside of every neighborhood of 0 ∈
IRd, such that for all sequences xn → +∞ increasing “slowly
enough” (i.e. xn = o(rn) for some sequence rn → +∞) we
have

xp
nP (Sn/bn ∈ xnA)−→ ν(A), (12)

whenever A ∈ Bd, A 63 0 and ν(∂A) = 0.

Given Conditions Bd and LDd we have a complete generaliza-
tion of Theorems 1 and 2.

Theorem 3 Let 0 < p < 1 or 1 < p < 2. Suppose Conditions Bd

and LDd hold with bn → +∞ and ν 6= 0.
Then bn varies 1/p-regularly, ν = ν(p, κ) for some κ 6= 0 and

Sn

bn
−→D Stab (p, κ), as n → +∞. (13)



Conversely, (13) with κ 6= 0 and 1/p-regular variation of bn

imply Conditions Bd and LDd with ν = ν(p, κ).

Theorem 4 Let p = 1. Suppose for each n ∈ IN , the law of
Sn is symmetric. Then Condition Bd and Condition LDd with
symmetric ν = ν(1, κ) 6= 0 hold if, and only if,

Sn

bn
−→
D

Stab (1, κ), as n → +∞, (14)

where κ 6= 0 is symmetric and bn is regularly varying with expo-
nent 1.

Proof. Necessity of Condition LDd. In order to prove Con-
dition LDd we shall proceed similarly as in the one-dimensional
case.

Let for each n, Yn,1, Yn,2, . . . be independent copies of Sn/bn.
By strict stability of µ,

k−1/p
k∑

j=1
Yn,j −→

D
µ, as n → +∞, k = 1, 2, . . . . (15)

It follows that there exists rn ↗ +∞ such, that for every sequence
{kn} ⊂ IN , which is increasing to infinity slowly enough, i.e.,
kn → +∞, kn = o(rn), we have

k−1/p
n

kn∑

j=1
Yn,j −→

D
µ, as n → +∞. (16)

(Notice that condition (16) is considerably weaker than condition
(15)).

Since kn →∞, the array {k−1/p
n Yn,j} of row-wise independent

random variables is infinitesimal and we can apply a convergence
criterion for stable laws for sums of independent random vari-
ables. In particular, for each Borel subset A ∈ Bd which is sepa-
rated from zero and such that ν(∂A) = 0, we have as n → +∞

knP (Sn/(bnk
1/p
n ) ∈ A) = knP (Sn/bn ∈ k1/p

n · A)−→ ν(A), (17)



where ν = ν(p, κ) is the Lévy measure of the stable law µ.
Setting xn = k1/p

n we obtain Condition LDd with sequences
xn of specific form and with rate r1/p

n . Due to the special form
of the Lévy measure ν(p, κ) we can extend (17) to all sequences
xn → +∞, xn = o(r1/p

n ).

Necessity of Condition Bd. Let y ∈ IRd. Then

〈y, Sn/bn〉 −→D µy,

where µy is the strictly stable law on IRd being an image of µ
under the mapping IRd 3 x 7→ 〈y, x〉 ∈ IR1. If y ∈ IRd is such
that µy is different from δ0, we obtain (9) from the corresponding
theorem for d = 1. If µy = δ0, we have for any sequence kn ≤ n

〈
y,

Skn

bn

〉
=

bkn

bn
·

〈
y,

Skn

bkn

〉
−→
P

0,

for if kn′ →∞ along some subsequence n′, then supn bkn
/bn < +∞

by regular variation of bn and if kn′′ remains bounded along some
subsequence n′′, then we have bkn′′/bn′′ → 0 by bn → ∞. Hence
if kn + ln ≤ n, then Skn+ln/bn −→P 0, Skn

/bn −→P 0 and
Sln/bn −→P 0 and (9) is satisfied for y, too.

Sufficiency. Suppose Conditions Bd and LDd hold for some
bn → ∞ and some measure ν which is finite outside of every
neighborhood of 0 ∈ IRd. Since strict stability of µ is equivalent
to µ∗n = µ ◦ R−1

n1/p for each n ∈ IN , it is sufficient to prove that
for each y ∈ IRd one dimensional sums

∑n
k=1〈y, Xk/bn〉 converge

to some strictly p-stable law on IR1 (possibly degenerated at 0).
Let us fix y ∈ IRd, y 6= 0, and consider in (12) the following

sets Ay
+, Ay

− ⊂ IRd

Ay
+ = {x; 〈y, x〉 > 1}, Ay

− = {x; 〈y, x〉 < −1}. (18)

These sets are separated from zero and we may assume that
ν(∂Ay

±) = 0 (otherwise we may replace y with r · y for some



1 > r > 0). Moreover, by (12) we have

xp
nP




n∑

k=1
〈y, Xk/bn〉 > xn


 = xp

nP (Sn/bn ∈ xnA
y
+) → c+ = ν(Ay

+),

provided xn → +∞ slowly enough. Similar relation holds for the
left-hand tails of

∑n
k=1〈y, Xk/bn〉. It follows that in the case

ν(Ay
+) + ν(Ay

−) > 0 (19)

we may apply either Theorem 1 (for 0 < p < 1 and 1 < p < 2)
or Theorem 2 (for p = 1) in order to get the convergence of
{∑n

k=1〈y, Xk/bn〉} to a non-degenerate strictly p-stable law. In
particular, bn is p-regularly varying for there are y’s satisfying
(19) (by ν 6= 0).

It remains to prove that regular p-variation of bn and ν(A+)+
ν(A−) = 0 imply

n∑

k=1
〈y, Xk/bn〉 −→P 0. (20)

This can be done in various ways. One can use, for example
the normal convergence criterion (with the limit δ0 = N (0, 0))
developed in Jakubowski and Szewczak (1991) together with the
estimates of truncated moments given in Denker and Jakubowski
(1989). Less formal is the following procedure. Take {Y c

k } to be
independent, identically distributed and such that

n∑

k=1
Y c

k /bn −→
D

Stab (p, κ(c,c)),

where κ(c,c) is the same as in (7). By the corresponding one-
dimensional theorem, we have for xn increasing slowly enough

xp
nP




n∑

k=1
Y c

k /bn > xn


 → c,

as well as

xp
nP




n∑

k=1
Y c

k /bn < −xn


 → c.



It is now a matter of simple manipulations to deduce that we
have also

xp
nP




n∑

k=1
(Y c

k + 〈y, Xk〉)/bn > xn


 → c,

(and similarly for the left-hand tails). Since Condition B1 is ob-
viously satisfied for the sequence {Y c

k + 〈y,Xk〉}, we obtain

n∑

k=1
(Y c

k + 〈y, Xk〉)/bn −→
D

Stab (p, κ(c,c)).

Letting c ↘ 0 we obtain (20).

2. PROBABILITIES OF LARGE DEVIATIONS IN IRd

It follows from the proof of Theorems 3 and 4 that instead of
Condition LDd as it stands in (12) one can restrict the attention
to verifying whether

xp
nP (Sn/bn ∈ xnA)−→ ν(A), (21)

for much smaller class of sets A ∈ Bd than the whole ring of
bounded away from zero sets of ν-continuity. For example it is
enough to consider sets Ay

±, y ∈ IRd, defined by (18) or “radial”
sets described in (11). However, the problem does not seem to
be easier after simplification of such kind.

Fortunately, there are methods of essential reduction of (21) to
problems depending on properties of joint distributions of a fixed
finite number of random variables X1, X2, . . . , Xm. These meth-
ods were discussed in great detail in Jakubowski (1997) for the
case d = 1. Here we shall describe only basic steps in derivation
of their multidimensional versions.

In all considerations the following generalization of the well-
known Bonferroni’s inequality is crucial.



Lemma 5 (Lemma 3.2, Jakubowski, 1997). Let Z1, Z2, . . . be
stationary random vectors taking values in a linear space (E,BE).
Set T0 = 0, Tm =

∑m
j=1 Zj, m ∈ IN . If U ∈ BE is such that 0 /∈ U ,

then for every n ∈ IN and every k ∈ IN , k ≤ n, the following in-
equality holds:

|P (Tn ∈ U)− n(P (Tk+1 ∈ U)− P (Tk ∈ U))|

≤ 3kP (Z1 6= 0) + 2
∑

1≤i<j≤n
j−i>k

P (Zi 6= 0, Zj 6= 0).
(22)

To be applied effectively, inequality (22) requires that random
vectors Zn with great probability take value 0 and that clusters
of nonzero values are essentially of short length (i.e. of size k).
This can be achieved by subtracting from Xk/bn their truncation
around origin (in such a way that the total sum Sn/bn is little per-
turbed - typical property of heavy-tailed random elements), and
imposing mixing conditions which guarantee a kind of asymp-
totic independence of remaining “big” parts of components. The
whole procedure is laborious and completely analogous to the
one-dimensional case, hence we refer to Jakubowski (1997) for
details.

We shall consider three cases of particular interest: ψ-mixing,
m-dependent and φ-mixing sequences (for definitions see Bradley
and Bryc, 1985, or Jakubowski, 1993) satisfying the following
“usual conditions”:

U0. X1, X2, . . . are strictly stationary random vectors.

U1. {bn} is a 1/p-regularly varying sequence for some p, 0 < p <

2.

U2. For some K0 < +∞
sup
n∈IN

sup
x>0

xp · n · P (‖X1‖ > x · bn) ≤ K0. (23)



U3. If p = 1, then the law of X1, L(X1), is symmetric.

U4. If 1 < p < 2, then EX1 = 0.

Theorem 6 Suppose {Xk} is exponentially ψ-mixing (i.e. ψ(n)
≤ Kηn, n = 1, 2, . . . , for some K > 0 and 0 < η < 1), and such
that

ψ(1) < +∞. (24)

Then for all xn increasing slowly enough, as n → +∞,

xp
n|P (Sn/bn ∈ xnA)− nP (X1/bn ∈ xnA)| → 0, (25)

for all A ∈ Bd, A 63 0. In particular, nP (X1 ∈ bn · A) → ν(A)
implies

xp
nP (Sn/bn ∈ xnA) → ν(A). (26)

Theorem 7 Let {Xk} be m-dependent. Then for all xn increas-
ing slowly enough

xp
n |P (Sn/bn ∈ xnA) (27)

−n (P (Sm+1/bn ∈ xn · A)− P (Sm/bn ∈ xn · A))| → 0,

for all A ∈ Bd, A 63 0. In particular, if

n (P (Sm+1 ∈ bn · A)− P (Sm ∈ bn · A)) → ν(A), (28)

as n → +∞, then

xp
nP (Sn/bn ∈ xnA) → ν(A). (29)

Theorem 8 Suppose {Xk} is exponentially φ-mixing Then for
all xn increasing slowly enough

lim sup
m

lim sup
n

xp
n |P (Sn/bn ∈ xnA) (30)

− n (P (Sm+1/bn ∈ xn · A)− P (Sm/bn ∈ xn · A))| = 0,

for all A ∈ Bd, A 63 0. In particular, if for each m ∈ IN we have

nP (Sm ∈ bn · A) → νm(A) (31)



and, as m →∞,

νm+1(A)− νm(A) → ν(A), (32)

then
xp

nP (Sn/bn ∈ xnA) → ν(A). (33)

Remark 9 Theorems 6-8 can be used as tools for proving limit
theorems based on Theorems 3 and 4. For example Theorem
6 leads to a result similar to that of Davis (1983) (obtained
by purely one-dimensional methods). Theorem 7 allows prov-
ing results for m-dependent stationary random vectors due to
Jakubowski and Kobus (1989) and Kobus (1995) (originally ob-
tained by the point processes technique). Theorem 8 corresponds
to Theorem 3.9 in Jakubowski (1997), and gives a counterpart to
the early Ibragimov’s central limit theorem (Ibragimov, 1962).

Remark 10 Let us notice that in formulas (27), (29) and (33)
probabilities of large deviations “in direction” of the set A does
not depend on values of random variables outside of the “direc-
tion” A. This fact is far from being obvious! In particular, in
the list of “usual conditions” we did not assume regularity in all
“directions” (U2 says that there is no “dominating direction”),
and so the whole sum Sn/bn may be divergent while Condition
LDd holds for some family of sets A.

Remark 11 In Davis and Hsing (1995), under less general con-
ditions, an interesting probabilistic representation is given for
constants c+ and c− appearing in Theorems 1 and 2. This rep-
resentation is expressed in terms of functionals of certain point
processes naturally associated with the sequence {Xk}. Since the
structure of the multidimensional limit law is more complicated
than in the case d = 1, it would be interesting to extend Davis
and Hsing’s results and explain the mechanism of generating the
limiting Lévy measure in Condition LDd.
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