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ABSTRACT. Motivated by original Skorokhod’s ideas, a new topology has been defined
on the space P(X) of tight probability distributions on a topological space (X, 7). The
only topological assumption imposed on (X, 7) is that some countable family of continuous
functions separates points of X'. This new sequential topology, defined by means of a variant
of the a.s.Skorokhod representation, is quite operational and from the point of view of
nonmetric spaces proves to be more satisfactory than the weak topology. In particular, in
this topology the direct Prohorov theorem preserves its distinguished position within the
theory and the converse Prohorov theorem is quite natural and holds in many spaces. The
topology coincides with the usual topology of weak convergence when (X, 7) is a metric
space or a space of distributions (like S’ or D’).

1. THE A.S. SKOROKHOD REPRESENTATION

The celebrated Skorokhod’s paper [22] belongs to the special category of papers inspir-
ing research for dozens of years. Among many original ideas contained in this paper, one
of most brilliant was the construction of an almost surely convergent representation for
sequences convergent in distribution, now known as the a.s. Skorokhod representation.

Suppose we are given a sequence {X,},n =0,1,2,... of random elements with values
in a complete and separable metric space (X, p) which is convergent in distribution
(Xn —D Xo), i.e.

(1) Ef(X,) — Ef(Xop), as n — +oo,

for each bounded and continuous function f defined on the space X(f € CB(X)). Then
Theorem 3.1.1 bid. asserts that there exist A'-valued random elements Yy, Y7, Y5, ...,
defined on the unit interval ([0, 1], Bjo,1)) equipped with the Lebesgue measure ¢, such
that

(2) the laws of X,, and Y,, coincide for n =0,1,2,...,

(3) p(Yn(w),Yo(w)) — 0, as n — +oo, for each w € [0, 1].
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Skorokhod’s construction was extended by Dudley [5] to separable metric spaces.
Wichura [27] and Fernandez [8] proved the existence of a Skorokhod-like representa-
tion in nonseparable metric spaces, for limits with separable range. We refer to [6] and
[26] for the final form of the theory, built upon Hoffmann-Jgrgensen’s definition of the
convergence in distribution and providing a formalism for limit theorems for empirical
processes ([19],[26]).

Three remarks are relevant here. First, in the above generalizations random variables
Y,, were defined on a space larger than [0, 1]. To stress this fact we shall reserve the name
“the a.s. Skorokhod representation” to the case where Y,,’s satisfying (2)-(3) are defined
on the Lebesgue interval. Second, Hoffmann-Jgrgensen’s definition of the convergence in
distribution of (possibly nonmeasurable) elements in metric spaces is an ad hoc device
and does not correspond to a topology. Third — and most important for the present
paper — Skorokhod himself applied the a.s. representation in a different manner than his
followers.

We shall recall briefly Skorokhod’s way of using the a.s. representation. His purpose
was to investigate various topologies on the space of functions without discontinuities of
the second kind (after regularization such functions are nowadays called “cadldg”). As
usually we denote this space by D =D([0,1] : R!). Let @ be a countable dense subset of
[0,1],1 € Q. Since functions from D are determined by their values on any dense subset,
the mapping

(4) D3z (2(q))geq € RY

is one-to-one. The space R? is Polish, hence convergence of finite dimensional distribu-
tions of stochastic processes {X,,} with trajectories in D, i.e.

(5) (Xn(lh),Xn(QQ),--- vXn(qm)) ? (X()(lh),Xo(QQ),--- 7X0(qm))a

for all finite subsets {q1, ¢2, ... ,qm} C @, allows redefining random sequences (X, (q))qec0Q
onto the Lebesgue interval in such a way that

(6) the laws of (X, (¢))qeq and (Y(q))4eq coincide for n =0,1,2,...,

(7) Va(g,w) = Yo(q,w), asn — 400, ¢ € Q,w € [0,1].

Moreover, it is not diffucult to prove that for almost all w € [0, 1] we can define elements
Zn(-,w) of D by the formula

(8) Zn(t,w) = qlir?+ Ya(g,w), t €10,1), Zp(1,w) = Yp(l,w).

Therefore we have constructed a representation for D-valued random elements X,,, which
preserves convergence on dense subset () and which is independent of any topology on .

The main advantage of this construction is that assuming uniform tightness for {X,,}
(with respect to some topology 7 in D) we may in every subsequence {Z,, } extract a
further subsequence {Z,, } such that for {-almost all w

(9) anl(-,w) T> ZO('vw)a

as functions of ¢ € [0,1] (see Theorem 3.2.1 in [22]). This is sufficient for deriving
convergence in distribution X,, —p Xp.

The other advantage is that we can easily obtain also the converse implication: (5)
and X,, —p X (or, more generally, relative compactness) imply uniform tightness (see
Theorem 3.2.2 ibid.), independently of whether D equipped with 7 is a Polish space or
not. This is caused mainly by the known form of compact sets.

In the present paper we are going to explore systematically the above ideas and show
that they are especially effective in investigations of the convergence in distribution in
nonmetric spaces.
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2. THE A.S. SKOROKHOD REPRESENTATION IN NON-METRIC SPACES

In metric spaces a satisfactory theory of the convergence in distribution defined by (1)
was built by Prohorov [21] and the complete theory when X is a Polish space has been
given in excellent books by Parthasarathy [18] and Billingsley [2]. The main Prohorov’s
contribution was providing a very efficient criterion of relative compactness. Due to the
direct Prohorov theorem, a family {u;}ic1 of probability laws on a metric space (S, Bs)
is relatively compact, if it is uniformly tight, i.e. for every € > 0 there is a compact set
K. C S such that

(10) wi(K:)>1—¢, i€l

The converse Prohorov theorem states that in Polish spaces relative compactness implies
uniform tightness.

After leaving the (relatively) safe area of metric spaces, the definition (1) brings many
disturbing problems, even if we remain in the world of random elements with tight
distributions. Let us consider, for example, the infinite dimensional separable Hilbert
space (H, (,)) equipped with the weak topology 7, = o(H, H). It is a completely regular
space (for it is a linear topological space), and since H with the norm topology is Polish,
(H,Ty) is also Lusin in the sense of Fernique (“espace séparé” in [9]). But Fernique [9]
gives an example of an H-valued sequence {X,,} satisfying

(11) Ef(X,) — £(0), as n — +os,

for each bounded and weakly continuous function f : H — R', and such that for each
K >0

(12) lim inf P(|1X, | > K) = 1.

This means that on the space (H, 7, ) there are weakly convergent sequences (to ug = do
in (11)) with no subsequence being uniformly tight. It follows that the approach based
on the direct Prohorov theorem is no longer a universal tool for investigating
the weak convergence on either completely regular or Lusin spaces. In order to
overcome this difficulty, Fernique [10] gives a characterization of relative compactness in
Lusin spaces: a set K of tight (or Radon) probability measures (K C P (X)) is relatively
compact if, and only if, for each sequence of bounded continuous functions f,, : X — R!
which is decreasing to zero pointwisely, integrals converge to zero uniformly over K :

(13) lim sup/fm(a:)u(da:) =0.

m—00 MGK

While this condition is very elegant, it seems to be very difficult to check without uniform
tightness.

In spite of loosing its universal character, the direct Prohorov theorem remains valid
in (H,y) (for T,-compacts are metrisable — see [23]). But again the picture is not clear,
since uniform tightness on (H,7,), i.e.

(14) Jim_sup P(1X > K) =0,

implies relative compactness in topology strictly finer than the topology of weak conver-
gence of measures on (H, 7,,), namely the topology of weak convergence of measures on H
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equipped with the sequential topology (7.,)s of weak convergence of elements of H. One
can give a direct proof of this fact, but it seems to be more instructive to apply Theorem
1 of [12], which asserts that every sequence satisfying (14) contains a subsequence {X,, }
which admits the a.s. Skorokhod representation: one can define on the Lebesgue interval
([0,1], Bjg,1),£) H-valued random elements Yy, Y7, ... such that

(15) Xp, ~Yi, k=1,2,...
and for each y € H and each w € [0,1]
(16) (y, Yi(w)) — (y,Yo(w)), as k — oo.

By the last line, for every sequentially weakly continuous function f : H — R! we have
f(Yi(w)) = f(Yo(w)),w € [0,1], and if f is bounded,

(17) Ef(Xn,) = Ef(Yy) — Ef(Yo), as k — oo.

The direct Prohorov theorem applied in the above form exhibits its relations with the
a.s. Skorokhod representation — a tool which is very useful and which, besides, helps us
in better understanding convergence in distribution. It is known that the a.s. Skorokhod
representation is not available in the general case. For instance, in Fernique’s example
(11) no subsequence admits the a.s. Skorokhod representation (see [12] for details).

In some nonmetric spaces, however, weak convergence and the a.s. Skorokhod repre-
sentation are essentially equivalent. For example, one can prove [12] that in distribution
spaces (such as &' or D') we have the following result:

X, —p X if, and only if, in every subsequence {X,, } one can find a
further subsequence {X, } which admits the a.s. Skorokhod representation
(18)  (with Yp ~ Xo).

Although looking weaker, the above a.s. Skorokhod representation for subsequences is
equally useful as the representation for “full” sequences. It is natural to raise a ques-
tion how stronger are statements of type (18) with regard to the usual convergence in
distribution (1) and whether it is possible to build for them a reasonable theory.

In this paper we propose a new definition of the convergence in distribution of ran-
dom elements with tight laws, = say, which is defined by means of a variant of the
a.s. Skorokhod representation:

fin = o iff every subsequence {n;} contains a further subsequence {nj, }
such that po and {anl : 1 =1,2,...} admit a Skorokhod representation
(19)  defined on the Lebesgue interval and almost surely convergent “in compacts”.

(For precise definitions we refer to Section 5). Somewhat unexpectedly, this concept
can be applied in most cases of interest and is quite operational. In particular, P(X)
equipped with the sequential topology determined by == has the following remarkable
properties:

e “relatively compact” set of tight probability measures means exactly “relatively
uniformly tight”, with the latter meaning that in every subsequence there is a
futher subsequence which is uniformly tight (Theorem 5.5, Section 5);

e the converse Prohorov theorem is quite natural and holds in many spaces (The-
orems 6.1 — 6.5 and 6.7, Section 6);

e no assumptions like the T3 (regularity) property are required for the space X,
which is very important in applications to sequential spaces (Section 4);

e on metric spaces the theory of the usual weak convergence of tight probability
distributions remains unchanged (Theorem 5.8, Section 5).
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3. TOPOLOGICAL PRELIMINARIES

Let (X, 7) be a topological space. Denote the convergence of sequences in 7-topology
by “—.” and by “75” the sequential topology generated by 7-convergence. Recall that

F C X is 7s-closed if F' contains all limits of 7-convergent sequences of ele-
(20)  ments of F.

Our basic assumption is:

There exists a countable family {f; : X — [—1,1]};e1 of T-continuous
(21)  functions, which separate points of X.

This condition is not restrictive and possesses several important implications which
allow to build an interesting theory. As the most immediate consequence we obtain a
convenient criterion for 7-convergence:

If {z,,} C X is relatively compact, and for each i € I f;(z,) converges to some
(22) number «;, then z,, 7-converges to some zq and f;(zg) = ay,i € L.

Assumption (21) defines a continuous mapping f:x > [—1,1]" given by the formula

(23) f(@) = (fi(2))ier-
By the separation property of the family {f;}ic1
(24) X is a Hausdorff space (but need not be regular).

There is an example of a Hausdorff non-regular space, which will be referred to as “stan-
dard” and which is also suitable for our needs: take X' = [0,1] and let the family
of closed sets be generated by all sets closed in the usual topology and one extra set
A={1,1,%,1,...}. Then X is not a regular space [16], but still satisfies (21).

Let us observe that for any compact set K C X the image f(K) C [~1,1]" is again
compact and since K = f1(f(K)) we get

Every compact subset is o(f; : ¢ € I)-measurable (hence is a Baire subset
(25)  of X) and is metrisable.

In many cases o(f; : i € I) is just the Borel o-algebra. In any case every tight Borel
probability measure on (X, 7) is uniquely defined by its values on o(f;;i € I). Moreover,
every tight probability measure p defined on o(f; : i € I) can be uniquely extended to the
whole o-algebra of Borel sets. Hence if X : (2, F, P) — X is o(f; : 1 € [)-measurable and
the law of X (as the measure on o(f; : 7 € 1)) is tight, then X is Borel-measurable if we
replace F with its P-completion F. In particular, if {f!};cr is another family satisfying
(21), then X : (Q, F,P) = X is o(f! : i € [')-measurable.

The above remarks show that our considerations do not depend essentially on the
choice of the family {f;};c1 satisfying (21). Therefore without loss of generality we may
fix some family {f;};c1 and restrict the attention to random elements X such that
fi(X),i € I, are random variables and the law of X is tight, and to tight
probability measures defined on o(f; : i € I). As in Section 2, the family of such
measures will be denoted by P(X).

Every tight probability measure on X is the law of some X-valued random
(26)  element defined on the standard probability space ([0, 1], Bo 1, £)-
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To see this, let us notice that f is one-to-one and continuous, but (in general) is not
a homeomorphism of X onto a subspace of [0,1]". Nevertheless f is a homeomorphic
imbedding, if restricted to each compact subset K C X, and so it is a measurable isomor-
phism, if restricted to each o-compact subspace of X'. If y is a tight probability measure,
then it is concentrated on some o-compact subspace X of X', and uof—1 is a probability
measure on [0, 1]', concentrated on the g-compact subspace f(X1). But it is well-known
(see e.g. [3]) that then there exists a measurable mapping Y : [0, 1] — [0, 1]* such that

(27) po f~h="toy ™,

and, in particular, Y € f(X;) with probability one. It remains to take any zo € X; and
define

Y (W), #Y(w) e f(X);

T, otherwise.

(28) x() = {

Using somewhat subtler reasoning than the one used in the proof of (25) we see that

for relatively compact K C X, the set f~'(f(K)) is both a 7-closed subset of X and the
closure of K in the sequential topology 7. Hence we have

The closure of a relatively compact subset consists of limits of its convergent
(29)  subsequences (but still need not be compact).

Here again the standard example exhibits the pathology signalized in (29): the whole
space [0,1] is not compact, but it is a closure of a relatively compact set [0,1] \ A.
Remark (29) affects the definition of uniform tightness where we cannot, in general,
replace sequential compactness with measurability and relative compactness. We have,
an important property

(30) K C X is compact iff it is sequentially compact.

Since by (25) 7-compacts are metrisable, they are also sequentially compact. So
suppose that K is sequentially compact, i.e. in every sequence {z;} C K one can find a
subsequence {z,, } convergent to zp € K. Let C be 7-closed and let {z,} C CNK. There
exists a subsequence z,, —, zp € K. Since C is also 7s-closed, zop € C'N K and we
conclude that CN K is sequentially compact. In particular, f(C’ﬂK) is a compact subset
of the compact set f(K) C [0,1]". Tt follows that there exists an open set G C [0, 1]" such
that

(31) f(CNK) =G fK).

_ Let {Ga}aca be a 7-open cover of K. By (31) one can find an open cover {Gqa} of
f(K) such that ) )
GaNf(K) = f(Ga NK).

Since f(K) is compact, we can find a finite cover Uge 4, G D f(K). Hence Ugea,Go DO K
and K is compact.
Condition (30) implies in turn that

The sequential topology 7, is the finest topology on X in which compact
(32)  subsets are the same as in 7.
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To prove (32) let us observe first that (X, 75) also satisfies (21), for 7-continuity im-
plies sequential T-continuity and so 74-continuity. By (30) compactness and sequential
compactness are equivalent for both 7 and 7. Since sequential compactness in 7 and
Ts coincide, T preserves the family of 7-compact subsets. It remains to prove that if
7' D 7,7'-compacts coincide with 7-compacts and F is a 7'-closed subset, then F' is 7,-
closed, i.e. satisfies (20). Suppose {z,} C F and z, —, zo. Let K = {zg,21,22,...}.
Then K is T-compact, hence also 7'-compact. In particular, F'N K is 7/-compact, hence
T-compact, hence sequentially 7-compact, hence zo € K N F C F and F € 5.

An important corollary to (32) is

(33)  Any uniformly 7-tight sequence of random elements in X is uniformly 7,-tight.

Remark 3.1. On every Hausdorff space (X, 7) there exists the finest topology kx D 7
which has the property (32), i.e. kx-compact sets are still 7-compact. Equipped with
this topology X becomes so called k-space (see [7], pp.152-155). By (32) we conclude
that in spaces satisfying (21) the topologies kx and 75 coincide. This particular fact,
as well as the “advanced” features (25), (26), (29), (30), (32) and (33) show that our

countable continuous separation property (21) permits forgetting most subtle topological
notions and remaining in the area very close to basic topological intuitions.

4. AN EXAMPLE: SEQUENTIAL SPACES

Properties (32) and (33) stress the potential importance of the notion “sequential
space”. In this section we collect several useful facts about such spaces.

We say that X is a space of type £ (Fréchet, [11]), if among all sequences of elements
of X' a class C(—) of “convergent” sequences is distinguished, and to each convergent
sequence {x, }n,en exactly one point xo (called “limit”: x,, — xq) is attached in such a
way that

(34)  For every x € X, the constant sequence (z,x,...) is convergent to .

If £, — 29 and 1 < ny < ny < ..., then the subsequence {z,, } converges,
(35)  and to the same limit: x,, — xo, as k — oc.

It is easy to see that in the space X of type £ the statement paralleling (20):

F C X is closed if F contains all limits of “—”-convergent sequences of
(36)  elements of F

defines a topology, O(—) say, which is called sequential and (X, O(—)) is called a
sequential space.

It must be stressed that for a sequential topology to be defined only extremely simple
properties (34) and (35) are required.

The topology given by (36) defines in turn a new (in general) class of convergent
sequences, which can be called convergent “a posteriori” (Urysohn, [25]), in order to
distinguish from the original convergence (= convergence “a priori”). So {z,} converges
a posteriori to xg, if for every open set G € O(—) eventually all elements of the sequence
{z,} belong to G. Kantorowich et al [14, Theorem 2.42, p.51] and Kisynski [15] proved
that this is equivalent to the following condition:

Every subsequence z,,, Zp,,... of {z,} contains a further subsequence Ty, s
(37)  Zn,,... convergent to zo a priori.
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In particular, convergence a posteriori satisfies the following condition.

If every subsequence Tp,, Tn,, ... of {z,} contains a futher subsequence z,, ,
(38)  Zn,,... convergent to xp, then the whole sequence {z,} is convergent to zo.

If the L-convergence “—” satisfies also (38), then we say that X" is of type £* and
will denote such convergence by “—”. Within this terminology, another immediate
consequence of Kantorovich-Kisynski’s theorem is that in spaces of type £* convergence
a posteriori coincides with convergence a priori.

It follows that given convergence “—” satisfying (34) and (35), we can weaken this
convergence to convergence “——” satisfying additionally (37), and the latter convergence

is already the usual convergence of sequences in the topological space (X, O(——)) =
(X,0(==)). At least two examples of such a procedure are well-known.

Example 4.1. If “—” denotes the convergence “almost surely” of real random vari-
ables defined on a probability space (€, F, P), then “—” is the convergence “in proba-
bility”.

Example 4.2. Let X = R' and take a sequence ¢, \, 0. Say that z, — =z, if for each

. . *
n € N, |z, — zo| < €p, i.e. z, converges to xo at given rate {e,}. Then “—” means
usual convergence of real numbers.

The following obvious properties of sequential spaces will be used throughout the
paper without annotation:

(39)  Aset K C X is “—”-relatively compact iff it is “——”-relatively compact.

A function f on X is O(—=)-continuous iff it is “—”-sequentially continuous
(equivalently: ¢ ‘—”-sequentially continuous), i.e. f(z,) converges to f(zo)
(40)  whenever z,, — o (or ¥, — 20).

Finally, let us notice that if (X, 7) is a Hausdorff topological space, then 7 C 74 =
O(—), and in general this inclusion may be strict. In particular, the space of sequen-
tially continuous functions may be larger than the space of T-continuous functions.

For more information on sequential spaces we refer to [7] or [1].

5. A NEW SEQUENTIAL TOPOLOGY OF THE CONVERGENCE IN DISTRIBUTION

The reason we are interested in topological spaces satisfying (21) is Theorem 2 from
[12] (restated below) which may be considered both as a strong version of the direct
Prohorov theorem and a generalization of the original Skorokhod construction [22].

Theorem 5.1. Let (X, 7) be a topological space satisfying (21) and let {p,}nen be a
uniformly tight sequence of laws on X. Then there exists a subsequence ny < ns < ...
and X -valued random elements Yy,Y1,Ys, ... defined on ([0, 1], Bjo 17, £) such that

(41) X, ~Yi, k=1,2,...,

(42) Vi (w) — Yo(w), as k — oo,w € [0,1].
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Let us notice that contrary to the metric case under (21) alone we do not know whether
the set of convergence
{w: Y (w) — Yo (w), as k — oo}
T

is measurable. What we know is measurability of sets of the form

(43) CH{V}L, K) ={w: Y (w) — Yo(w), as k = oo} N ﬂ{w Y (w) € K},
k=1

where K C X' is compact. This becomes obvious when we observe that by property (22)
we have

CUYLK) = {w: f(Ti(w) = FTow)), as k = oo} n ({w: Yilw) € K.
k=1

Now suppose for each £ > 0 there is a compact set K. such that
(44) P(C({Vi}, K2) > 1—e.

Then the set of convergence contains a measurable set of full probability and one can say
that Y, converges to Yj almost surely “in compacts”. In particular we have

Corollary 5.2. Convergence almost surely “in compacts” implies uniform tightness.

The a.s.convergence (42) has been established exactly the way described above. If the
representation Yy, Y1, Y5, ... satisfies (41) and the convergence (42) is strengthened to the
almost sure convergence “in compacts”, then we will call it “the strong a.s. Skorokhod
representation”. Using this terminology we may rewrite Theorem 5.1 in the following
form.

Theorem 5.3. Let (X, 7) be a topological space satisfying (21) and let {p,}nen be a
uniformly tight sequence of laws on X. Then there exists a subsequence fin,, liny,- - -
which admits the strong a.s. Skorokhod representation defined on ([0, 1], Big 1, £).

We are also ready to give a formal definition of the convergence “==" introduced in
Section 2 for elements of P(X) :

tn == po if every subsequence {n;} contains a further subsequence {ny, }
such that o, fin,, n,, ... admits the strong a.s. Skorokhod representation de-
(45)  fined on the Lebesgue interval.

Let us say that the topology O(:*>) is “induced by the strong a.s. Skorokhod repre-
sentation”.

As an immediate corollary to Theorem 5.3 we obtain the direct Prohorov theorem for
:c:*>77.
Theorem 5.4. If (X, 1) satisfies (21), then in P(X) relative uniform tightness implies
relative compactness with respect to “==7.

The space P(X) with the induced convergence “==" is of £L* type, i.e. “==" satisfies
(34), (35) and (38). Notice that (34) holds by (26), and that (38) allows us applying the
standard “three-stage procedure” of verifying convergence:

1. Check relative compactness of {u,} (usually by Theorem 5.3), i.e. whether every

subsequence {/i,, } contains a further subsequence {yn,, } ==>-convergent to some
limit.
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2. By some other tools (characteristic functionals, finite dimensional convergence,
martingale problem, etc.) identify all limiting points of ==-convergent subse-
quences {f, } with some distribution {ug}.

3. Then conclude p,, == po.

By the reasoning similar to the one given before (17), we see that for any sequentially
continuous and bounded function f : (X, 7s) — R!, the mapping

(46) PX) 5 ues /X F@)u(de) € R,

is sequentially continuous (hence: continuous) with respect to O(==). In particular,
(’)(:*>) is finer than the sequential topology given by the usual weak convergence of
elements of P(X,7s). The standard example shows that in general these two topologies
do not coincide. But even if they do, the definition using the strong a.s. Skorokhod
representation is more operational. Moreover, we have a nice characterization of relative
== _compactness, as announced in Section 2.

Theorem 5.5. Suppose (X, 7) satisfies (21). Then the topology O(=) induced by the
strong a.s. Skorokhod representation is the only sequential topology O on P(X) satisfying:

(47) O is finer than the topology of weak convergence of measures.

The class of relatively O-compact sets coincides with the class of relatively
(48) uniformly T-tight sets.

Proof. Relation (48) gives us the family of relatively compact subsets and (47) helps us
to identify limiting points. This information fully determines an £*-convergence. O

Remark 5.6. Analysing Fernique’s example quoted in Section 2 shows that (48) is not
valid in the space P((H, 7)) equipped with the topology of weak convergence. It follows
the topology O(==) may be strictly finer than the topology of weak convergence (or
weak topology) on P(X) and the converse Prohorov theorem holds in many spaces — see
Section 6.

Remark 5.7. In many respects the topological space (P(X), O(==)) is as good as (X, 7)
is: the property (21) is hereditary. To see this, take as the separating functions

(49) R ia i (11) = /X Fi @) fir (@) - fin, ()l de),

for all finite sequences (1,72, .. , i) of elements of I. Hence we may consider within our
framework “random distributions” as well.

Theorem 5.5 does not contain the case of an arbitrary metric space, since in nonsep-
arable spaces condition (21) may fail. However we have

Corollary 5.8. If X is a metric space, then in P(X) the weak topology and O(==)
coincide.

Proof. Tt is well known [2] that the weak topology on P(X) is metrisable, hence sequen-

tial. Suppose that u, weakly converges to pg. We need to show that p, = po. By
LeCam’s theorem [17], [2] the sequence {uy} is uniformly tight. If K,,, m = 1,2,...

Y
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are compacts such that inf,, u,(K,,) > 1 —1/m and &} = UX_; Ky, then p,(X;) =1,
n=0,1,2,..., and A} with (relative) metric topology satisfies (21). Applying Theorem
5.3 we find the desired Skorokhod representation for subsequences of p,. O

Remark 5.9. One may prefer the stronger convergence defined by means of the Skorokhod
representation for the full sequence: p, = po if on ([0,1],Bjg1],¢) there exists the
strong a.s. Skorokhod representation Yy,Y7,... for ug,pu1,... However, by the very
definition ‘=, 7 is only L-convergence and so is not a topological notion, while “==”
is the £*-convergence obtained from “=, ” by Kantorovich-Kisynski’s recipe (37).

b2

Remark 5.10. The definition of the topology induced by the strong a.s. Skorokhod rep-
resentation may seem to be not the most natural one. But O(==) fulfills all possible
“portmanteau” theorems (see [24]), coincides with weak topology on metric spaces and
by means of Prohorov’s theorems is operational and easy in handling.

6. CRITERIA OF COMPACTNESS AND THE CONVERSE PROHOROV THEOREM

To make the direct Prohorov theorem work, one needs efficient criteria of checking
sequential compactness. It will be seen that given such criteria relative uniform tightness
is equivalent to uniform tightness and the converse Prohorov theorem easily follows.

We begin with spaces (X, 7) possessing a fundamental system of compact subsets, i.e.
an increasing sequence {K,,}men of compact subsets of X' such that every convergent
sequence x, —>, Zo is contained in some K,,, (equivalently: every compact subset is
contained in some K,,,). Locally compact spaces with countable basis serve here as the
most important, but not the only example. For instance, balls K,,, = {z : ||z]| < m}
form the fundamental system of compact subsets in a Hilbert space H with either the
weak topology 7, or the sequential topology (7,,)s generated by the weak convergence
in H. The same is true in the topological dual E’ of a separable Banach space E.

Theorem 6.1. Suppose that (X, 1) satisfies (21) and possesses a fundamental system
{K..} of compact subsets. Then for K C P(X) the following statements are equivalent:

(50) K is == -relatively compact.

(51) K is uniformly T-tight.

Proof. In wiew of Theorem 5.4 we have to prove that (50) implies (51). Suppose (51)
does not hold. Then there is € > 0 such that for each m one can find p,, € K satisfying

(52) i (KS) > e.

By ==-relative compactness there exists a subsequence j,,, admitting a strong a.s. Sko-
rokhod representation. By Corollary 5.2 {jm, tren is uniformly tight. This contradicts
(52). O

As the next step we will consider a more general scheme in which compactness means
boundedness with respect to some countable family of lower semicontinuous functionals.
More precisely, we suppose that there exists a countable family of measurable nonnegative
functionals {hy }rex such that

(53) sup hi(x) < 400, k € K
zeEK
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implies relative compactness of K, and if z,, —, zo then

(54) hi(zo) < liminf hy(z,,) < +o00, k€ K
n—oQ

Notice that under (54) any relatively compact set K satisfies (53) and is contained in
some set of the form

(55) K = m {z: hy(x) < Ck}.
keK

Moreover, under both (53) and (54) every set of the form (55) in sequentially compact.

Theorem 6.2. Let (X, 1) satisfies (21). Suppose compactness in (X,T) is given by
boundedness with respect to a countable family {hy}rex of lower semicontinuous func-
tionals. Then for K C P(X) the following conditions are equivalent:

(56) K is = relatively compact.

(57) K is uniformly T-tight.
For each k € K the set {pohi' : p € K} C P(RY) is uniformly tight, i.e.

(58) lim sup p({z : hx(z) > C}) =0.

C—o00 nEK

Proof. Conditions (57) and (58) are obviously equivalent and implication (57) = (56) is
proved in Theorem 5.4. In order to prove that (56) implies (58) suppose that for some
k € K there is € > 0 such that for each N one can find puy € K with the property

(59) pn({z : hi(z) > N}) 2 e, N e N

If some subsequence of py admits a strong a.s. Skorokhod representation, it must be
uniformly tight and (59) cannot hold along this subsequence. This shows that K is not
== relatively compact. [J

It is worth to emphasize that Theorem 6.2 completely generalizes the ordinary converse
Prohorov theorem. To see this, take Polish space (X, p) and choose in it a countable dense
subset D = {x1,xa,...}. Set for k € N

N
hi(z) = inf {N ve Kp(a:i,l/k)} .

i=1

Then every functional hy is bounded on K C X if, and only if, K is totally p-bounded,
hence conditionally compact by completeness of (X, p). The property (54) follows by the
very definition of hy.

There exist separable metric spaces for which the converse Prohorov theorem is not
valid [4], with rational numbers @ being the most striking example [20]. Our results
suggest that it is a very complicated structure of compact sets in those spaces that
causes invalidity of the converse Prohorov theorem. The lack of completeness does not
seem to be the main reason.
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Topologically complete spaces and non-metrisable o-compact spaces like (H, 7,,) does
not end the list of cases covered by Theorem 6.2. For example on the Skorokhod space
D([0,1] : R") there exists (see [13]) a functional topology which is non-metrisable but
satisfies (53) and (54), hence by our Theorem 6.2 is as good as Polish space (of course,
only from the formal point of view). In fact, the present paper may be considered as
an attempt to find a general framework in which that topology can be placed naturally.
“Countable boundedness” is not a universal criterion for compactness. In general we do
not know any criterion which could pretend to universality. Therefore any particular
case must be carefully analysed. We will show three examples of such an analysis.

The first type of results has been suggested by topologies on function spaces in which
conditional compactness can be described in terms of “moduli of continuity”. A rough
generalization is that on a topological space (X, T) a double array {gs, ;}rek jen (where
K is countable) of nonnegative measurable functionals is given and that the functionals
possess the following properties:

(60) gk,j+1 S 9k.,j, ke Ka .7 e N
If ,, —, o then for each k£ € K

(61) lim sup g, j(z,) = 0.

] n
If for each k € K

(62) lim sup g ;(z) =0,
IR K

then K C X is conditionally compact.
Clearly, the new scheme contains the previous one. If we set

1 .
gk (x) = ;hk(a:), keKjeN,

then (54) implies (61) and (53) and lower semicontinuity of hj gives conditional com-
pactness in (62). Recall that in general in spaces satisfying (21) relative compactness
does not imply conditional compactness. In metric spaces, however, it does and so e.g.
Skorokhod topology Jo [22] (and not only .J;) satisfies the converse Prohorov theorem,
as we can see from the following result.

Theorem 6.3. Let (X, T) satisfies (21). Suppose conditions (60) — (62) determine con-
ditional compactness in (X, 7). Then for K C P(X) the following conditions are equiva-
lent:

(63) K is == relatively compact.

(64) K is uniformly T-tight.
For each k € K

(65) lim sup p({z: grj(z) >€}) =0, e > 0.
=00 ek
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Proof. Similarly as before, it is enough to show that if (65) is not satisfied then one can
find in K a sequence with no subsequence admitting a strong a.s. Skorokhod representa-
tion. Let us observe first that if X; —, X a.s. and j; — oo then by (60) and (61), for
each k£ € K and almost surely,

(66) lim sup g, (X;) < lim limsup(X;) = 0.

=00 J7X% 500

If (65) is not satisfied, then there are k£ € K and € > 0 such that for each j € N one can
find p; € K satisfying

(67) pil{z = gr,j(z) >e}) >e.

If X; is the a.s. Skorokhod representation for some subsequence p; then by (66)

iy ({x P 9k, (a:) > 6}) =0,

hence (67) cannot hold.O

The second type of results is motivated by the structure of compact subsets in the
space of distributions S’ or, more generally, the topological dual of a Fréchet nuclear
space.

Suppose that on (X, 7) there exists a decreasing sequence {gm, }men of nonnegative
measurable functionals such that K C X is conditionally compact if for some my € N

(68) SUD @y, () < Cpyy < +00.
zeK

Notice this implies

sup  sup gm(z) < Chg,s
mng TEK

but it may happen that for some m < mg

sup qm () = +o0.
zeK

Theorem 6.4. Let (X,7) satisfies (21) and (68). Then for K C P(X) the following
conditions are equivalent:

(69) K is == relatively compact.

(70) K is uniformly T-tight.
For each € > 0 one can find mg € N and C > 0 such that

(71) sggu({x Hme(2) > C}) < e

Proof. We apply the standard strategy. If (71) is not satisfied, then there is € > 0 such
that for every M and for some puyr € K

(72) vz qu(z) > M}) > e.
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If { X4} is the strong a.s. Skorokhod representation for some subsequence s, , then it is
tight (by Corollary 5.2) and so for some mg and C

(73) P(gmo(Xk) <C) =pm,({z: qmo () <C}) >1-¢, k=1,2,...
Hence for k satisfying My > C and My > mg we get from (72) and (73)

1—e> pum, ({2 qu (@) < Myi})
> par, ({2 2 g, (2) < CY)
> 1y, ({.22 : qu(CE) < Mk}) >1-—e¢,

what is a contradiction. O

Usually results valid for S’ also hold for space D', despite its more complicated struc-
ture. The reason is that D’ can be identified with a closed subset of a countable product
of duals to Fréchet nuclear spaces and that the properties under consideration are pre-
served when passing to closed subspaces and countable products. This is exactly the
case with our “Prohorov spaces”. Recall that (X, 7) is a “Prohorov space” if every con-
ditionally compact subset X C P(X) (with P(X) equipped with the weak topology) is
uniformly 7-tight (see [20]). Since we know that O(=) may be strictly finer than the

*

weak topology, the corresponding notion for (P(X), O(=)) may be different. Therefore
we say that (X,7) is an S-P space, if every =-relatively compact subset of P(X) is
uniformly 7-tight.

The present section contains several standard examples of S-P spaces. We conclude
the paper with formal statement of some properties of S-P spaces.

Theorem 6.5. Let (X, 1) be an S-P space satisfying (21). If C C X is either closed or
Gy, then (C,7|c) is again S-P space.

Proof. The only nontrivial part is proving that if G is open and K € P(G) is =-relatively
compact (in P(G)!), then K is uniformly 7|g-tight. Since relative compactness in P(G)
means also relative compactness in P(X'), by the S-P property we get uniform 7-tightness
of K. By (29) the closure K in P(X) (which consists of limiting points of K) is uniformly
T-tight and so sequentially compact, both in P(X) and P(G) (the latter by relative
compactness in P(G)). Since in our case sequential compactness is equivalent to com-
pactness, it is now possible to repeat step by step the reasoning given in the proof of
Theorem 1, [20], pp.109-110. O

Corollary 6.6. Any S-P space satisfying (21) has the property that the closure of a
relatively compact set is compact and consists of the set itself and its limiting points. [

Theorem 6.7. Let (X, 7,),n =1,2,... be S-P spaces satisfying (21). Then the product
space [[7_,(Xn.Tn) is an S-P space. O
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