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Summary. We construct the Doob–Meyer decomposition of a submartingale as
a pointwise superior limit of decompositions of discrete submartingales suitably
built upon discretizations of the original process. This gives, in particular, a direct
proof of predictability of the increasing process in the Doob–Meyer decomposition.

1 The Doob–Meyer Theorem

The Doob–Meyer decomposition theorem opened the way towards the the-
ory of stochastic integration with respect to square integrable martingales
and—consequently—semimartingales, as described in the seminal paper [7].
According to Kallenberg [4], this theorem is “the cornerstone of the modern
probability theory”. It is therefore not surprising that many proofs of it are
known. To the author’s knowledge, all the proofs heavily depend on a result
due to Doléans-Dade [3], which identifies predictable increasing processes with
“natural” increasing processes, as defined by Meyer [6].

In the present paper we develop ideas of another classical paper by K. Mu-
rali Rao [8] and construct a sequence of decompositions for which the superior
limit is pointwise (in (t, ω)) equal to the desired one, and thus we obtain pre-
dictability in the easiest possible way.

Let (Ω,F , {Ft}t∈[0,T ], P ) be a stochastic basis, satisfying the “usual” con-
ditions, i.e. the filtration {Ft} is right-continuous and F0 contains all P -null
sets of FT . Let (D) denote the class of measurable processes {Xt}t∈[0,T ] such
that the family {Xτ} is uniformly integrable, where τ runs over all stopping
times with respect to {Ft}t∈[0,T ]. One of the variants of the Doob–Meyer
theorem can be formulated as follows.
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Theorem 1. Any submartingale of class (D) admits a unique decomposition
Xt = Mt +At, where {Mt} is a uniformly integrable martingale and {At} is
a predictable increasing process, with AT integrable.

In discrete time this theorem is trivial: if {Xk}k=0,1,...,k0 is a submartingale
with respect to {Fk}k=0,1,...,k0 , we can set A0 = 0 and

Ak =
k∑

j=1

E
(
Xj −Xj−1

∣∣ Fj−1

)
, k = 1, 2, . . . , k0.

The appealing idea of Murali Rao [8] consists in approximating At by increas-
ing processes defined by discretizations of Xt.

Let θn = {0 = tn0 < tn1 < tn2 < . . . < tnkn
= T }, n = 1, 2, . . ., be an

increasing sequence of partitions of [0, T ], with

max
1�k�kn

tnk − tnk−1 −→ 0, as n→∞.

By “discretizations” {Xnt }t∈θn of {Xt}t∈[0,T ] we mean the processes defined
by

Xnt = Xtnk if tnk � t < tnk+1, X
n
T = XT .

The process Xn is a submartingale with respect to the discrete filtration
{Ft}t∈θn and by the above discrete scheme we obtain a sequence of right
continuous representations

Xnt = Mn
t +Ant ,

where

Ant = 0 if 0 � t < tn1 ,

Ant =
k∑

j=1

E
(
Xtnj −Xtnj−1

∣∣ Ftnj−1

)
if tnk � t < tnk+1, k = 1, 2, . . . , kn − 1,

AnT =
kn∑

j=1

E
(
Xtnj −Xtnj−1

∣∣ Ftnj−1

)
.

Since Ant is Ftn
k−1

-measurable for tnk � t < tnk+1, the processes An are pre-
dictable in the very intuitive manner.

The following facts can be extracted from [8].

Theorem 2. If {At} is continuous (equivalently: {Xt} is “quasi-left contin-
uous”, or “regular” in the former terminology), then for t ∈

⋃∞
n=1 θn

Ant −→ At in L1.

In the general case

Ant −→ At weakly in L1, t ∈
∞⋃

n=1

θn.
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The latter statement cannot be improved: by a counterexample due to
Dellacherie and Doléans-Dade [2], there exists an increasing integrable process
{Xt} and a sequence θn of partitions of [0, 1] such that the An1 ’s fail to converge
in L1 to A1.

By a slight modification of the approximating sequence we can obtain
convergence in the strong sense.

Theorem 3. There exists a subsequence {nj} such that for t ∈
⋃∞
n=1 θn and

as J → +∞
1
J

( J∑

j=1

A
nj

t

)
−→ At, a.s. and in L1. (1)

Remark 1.

1. In fact, in any subsequence we can find a further “good” subsequence
with the property described in Theorem 3. In view of Komlós’ Theorem 4
below, it is natural to say that the sequence {An} is K-convergent to A.

2. We do not know whether the whole sequence converges in the Cesàro
sense.

2 Proof of Theorem 3

In order to avoid repetitions of well-known computations, we choose the text-
book [4] as a fixed reference and will refer to particular results therein.

The preparating steps are standard and are given on pages 413-4 in [4].

1. IfX is a submartingale of class (D), then the family of all random variables
of the form {Anτn

}, where τn is a stopping time taking values in θn, is
uniformly integrable. In particular,

sup
n
EAnT < +∞.

2. We can extract a subsequence {nk} such that Ank

T → α weakly in L1. We
define

Mt = E(XT − α | Ft), At = Xt −Mt.

Then we have also

Ank(t) −→ At weakly in L1, t ∈
∞⋃

n=1

θn.

In the main step of proof we use the famous theorem of Komlós [5] (see
also [1] for the contemporary presentation related to exchangeability).
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Theorem 4. If ξ1, ξ2, . . . is a sequence of random variables for which

sup
n
E|ξn| < +∞,

then there exists a subsequence {nj} and an integrable random variable ξ∞
such that for every subsequence {njk} of {nj} we have with probability one,
as K → +∞,

ξnj1
+ ξnj2

+ · · ·+ ξnjK

K
−→ ξ∞.

By this theorem we can find a subsequence {nkj} ⊂ {nk} and a random
variable αT such that

1
J

( J∑

j=1

A
nkj

T

)
−→ αT , a.s.

Since Ank

T → α = AT weakly in L1, the Cesàro means of any subsequence also
converge weakly to the same limit and we have αT = AT . Since the family
{AnT } is uniformly integrable, the above convergence holds in L1 as well.

Now let us take any t0 ∈
⋃∞
n=1 θn, t0 �= T . As before, one can find another

subsequence {nkji
} ⊂ {nkj} such that

1
I

( I∑

i=1

A
nkji
t0

)
−→ At0 , a.s. and in L1.

By the exceptional “subsequence property” given in the Komlós theorem we
can still claim that

1
I

( I∑

i=1

A
nkji

T

)
−→ AT , a.s. and in L1.

Repeating these steps for each t0 ∈
⋃∞
n=1 θn and then applying the diagonal

procedure we find a subsequence fulfilling the requirements of Theorem 3.
It remains to identify the limit with the unique predictable increasing

process given by the Doob–Meyer decomposition. This can be done using
Rao’s result, but given almost sure convergence everything can be done with
bare hands:

3 Predictability—direct!

We shall provide a direct proof of predictability of the process A appearing as
the limit in Theorem 3. For notational convenience we assume that (1) holds
for the whole sequence An. We introduce two auxiliary sequences of stochastic
processes given by the following formula.
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Ãn0 = 0,

Ãnt =
k∑

j=1

E
(
Xtnj −Xtnj−1

∣∣ Ftnj−1

)
if tnk−1 < t � tnk , k = 1, 2, . . . , kn,

B̃nt =
1
n

n∑

j=1

Ãjt .

The processes Ãn are adapted to the filtration {Ft}t∈[0,T ] and their tra-
jectories are left continuous, hence they are predictable by the very definition
of the predictable σ-field. The same holds for the B̃n.

It is sufficient to show that there exists a set E of probability zero such
that for every ω /∈ E and every t ∈ [0, T ]

lim sup
n→∞

B̃nt (ω) = At(ω). (2)

We have for t0 ∈
⋃∞
n=1 θn and n large enough

Ãnt0(ω) = Ant0(ω),

hence outside of a set E′ of probability zero

B̃nt0(ω)→ At0(ω).

Since
⋃∞
n=1 θn is dense in [0, T ], it follows that for ω /∈ E′, in every point of

continuity of A(·)(ω) we have

B̃nt (ω) −→ At(ω).

Moreover, since A is right continuous we have always

lim sup
n→∞

B̃nt (ω) � At(ω).

We conclude that (2) can be violated only in points of discontinuity of A.
We claim it suffices to prove that for each stopping time τ

lim
n→∞

EÃnτ −→ EAτ . (3)

To see this let us observe that if (3) holds then

E lim sup
n→∞

B̃nτ � EAτ = lim
n→∞

EB̃nτ � E lim sup
n→∞

B̃nτ ,

where Fatou’s lemma can be applied in the last inequality because

B̃nτ � BnT −→ AT in L1.

In particular, for every stopping time τ , we have almost surely,
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Aτ = lim sup
n→∞

B̃nτ .

Now it is well known (and easy to prove in the case of increasing processes)
that there exists a sequence {τq} of stopping times which exhaust all jumps
of A, i.e. P (∆Aτ > 0) > 0 implies P (τ = τq) > 0 for some q. For each q we
have

Aτq = lim sup
n→∞

B̃nτq
, a.s.

Enlarging E′ by a countable family of P -null sets (one for each τq), we obtain
a set E of P -measure zero (belonging to F0 due to the “usual” condition)
outside of which (2) holds.

In order to prove (3) let us observe that we can write

Ãnτ =
kn∑

k=1

Antnk I(t
n
k−1 < τ � tnk ).

Since τ is a stopping time, the event {tnk−1 < τ � tnk} belongs to Ftn
k
. If we

define

ρn(τ) = 0 if τ = 0, ρn(τ) = tnk if tnk−1 < τ � tnk ,

then ρn(τ) is a stopping time with respect to the discrete filtration {Ft}t∈θn ,
ρn(τ) � τ , ρn(τ) ↘ τ and

Ãnτ = Anρn(τ).

By the properties of the (discrete) Doob–Meyer decomposition

EAnρn(τ) = EXnρn(τ) = EXρn(τ) ↘ EXτ = EAτ .

We have proved that A is predictable. The proof of its uniqueness is stan-
dard (see e.g. Lemma 22.11 and Proposition 15.2 in [4]) and does not involve
advanced tools.
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